Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563269

RESUMO

An Ocular Sebaceous Carcinoma (OSC) is a rare malignant tumor for which initial clinical and pathological diagnosis is often incorrect. OSCs can mimic Squamous Cell Carcinomas of the Conjunctiva (SCCC). The aim of this study was to find microRNA biomarkers to distinguish OSCs and SCCCs from normal tissue and from each other. Clinical OSC and SCCC case files and the corresponding histopathological slides were collected and reviewed. Micro dissected formalin-fixed paraffin-embedded tumor and control tissues were subjected to semi-high throughput microRNA profiling. MicroRNA expression distinguishes OSCs and SCCCs from corresponding control tissues. Selected differentially expressed miRNAs were validated using single RT-PCR assays. No prognostic miRNAs could be identified that reliably predict SCCC metastasis or OSC recurrence. A comparison between OSCs (n = 14) and SCCCs (n = 18) revealed 38 differentially expressed microRNAs (p < 0.05). Differentially expressed miRNAs were selected for validation in the discovery cohort and an independent validation cohort (OSCs, n = 11; SCCCs, n = 12). At least two miRNAs, miR-196b-5p (p ≤ 0.05) and miR-107 (p ≤ 0.001), displayed a statistically significant differential expression between OSCs and SCCCs with miR-196b-5p upregulated in SCCCs and miR-107 upregulated in OSCs. In the validation cohort, microRNA miR-493-3p also showed significant upregulation in SCCCs when compared to OSCs (p ≤ 0.05). ROC analyses indicated that the combined miR-196b-5p and miR-107 expression levels predicted OSCs with 90.0% sensitivity and 83.3% specificity. In conclusion, the combined testing of miR-196b-5p and miR-107, can be of additional use in routine diagnostics to discriminate OSCs from SCCCs.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Oculares , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço , MicroRNAs , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/patologia , Neoplasias Oculares/genética , Perfilação da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
2.
Front Endocrinol (Lausanne) ; 15: 1340415, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577576

RESUMO

Background: Thyroid stimulating immunoglobulins (TSI) play a central role in the pathogenesis of Graves' orbitopathy (GO), while soluble interleukin-2 receptor (sIL-2R) is a marker for T-cell activity. We investigated TSI and sIL-2R levels in relation to thyroid function, disease activity and severity and response to treatment with intravenous methylprednisolone (IVMP) in patients with GO. Methods: TSI (bridge-based TSI binding assay), sIL-2R, TSH and fT4 levels were measured in biobank serum samples from 111 GO patients (37 male, 74 female; mean age 49.2 years old) and 25 healthy controls (5 male, 20 female; mean age 39.8 years old). Clinical characteristics and response to treatment were retrospectively retrieved from patient files. Results: Higher sIL-2R levels were observed in GO patients compared to controls (p < 0.001). sIL-2R correlated with fT4 (r = 0.26), TSH (r = -0.40) and TSI (r = 0.21). TSI and sIL-2R concentrations were higher in patients with active compared to inactive GO (p < 0.001 and p < 0.05, respectively). Both TSI and sIL-2R correlated with total clinical activity score (CAS; r = 0.33 and r = 0.28, respectively) and with several individual CAS items. Cut-off levels for predicting active GO were 2.62 IU/L for TSI (AUC = 0.71, sensitivity 69%, specificity 69%) and 428 IU/mL for sIL-2R (AUC = 0.64, sensitivity 62%, specificity 62%). In multivariate testing higher TSI (p < 0.01), higher age (p < 0.001) and longer disease duration (p < 0.01) were associated with disease activity. TSI levels were higher in patients with a poor IVMP response (p = 0.048), while sIL-2R levels did not differ between responders and non-responders. TSI cut-off for predicting IVMP response was 19.4 IU/L (AUC = 0.69, sensitivity 50%, specificity 91%). In multivariate analysis TSI was the only independent predictor of response to IVMP (p < 0.05). Conclusions: High TSI levels are associated with active disease (cut-off 2.62 IU/L) and predict poor response to IVMP treatment (cut-off 19.4 IU/L) in GO. While sIL-2R correlates with disease activity, it is also related to thyroid function, making it less useful as an additional biomarker in GO.


Assuntos
Oftalmopatia de Graves , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Imunoglobulinas Estimuladoras da Glândula Tireoide , Oftalmopatia de Graves/tratamento farmacológico , Estudos Retrospectivos , Receptores da Tireotropina , Tireotropina
3.
Ophthalmol Ther ; 7(1): 83-94, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29236212

RESUMO

INTRODUCTION: Many authors have reported on a myopic post-operative refractive prediction error when combining phacoemulsification with pars plana vitrectomy (phacovitrectomy). In this study we evaluate the amount of this error in our facility and try to elucidate the various factors involved. METHODS: This was a retrospective study which included 140 patients who underwent phacovitrectomy (39 with macular holes, 88 with puckers, and 13 with floaters). Post-operative refractive error was defined as the difference between the actual spherical equivalent (SEQ) and expected SEQ based on the SRK/T and Holladay-II formulas. Both univariate (paired t test, independent t test, one-way analysis of variance, or Mann-Whitney test) and multivariate (regression analysis) statistical analyses were performed. RESULTS: Overall, a refractive error of - 0.13 dpt (p = 0.033) and - 0.26 dpt (p < 0.01) were found in the SRK/T and Holladay-II formulas, respectively. For the independent diagnoses, only macular holes showed a myopic error with the SRK/T (- 0.31 dpt; p < 0.01) and Holladay-II (- 0.44 dpt; p < 0.01) formulas. In univariate analysis, significant factors involved in myopic refractive error were macular hole as diagnosis (p < 0.01 for SRK/T and Holladay-II), gas tamponade (SRK/T p = 0.024; Holladay-II p = 0.025), pre-operative myopia (p < 0.01 for SRK/T), and optical technique for axial length measurement (SRK/T and Holladay-II p < 0.01). In the multivariate analysis, pre-operative axial length (p = 0.026), optical technique for axial length measurement (p < 0.01), and pre-operative SEQ (p < 0.01) were independent predictors for myopic refractive error in the SRK/T formula. For the Holladay-II formula, optical technique for axial length measurement (p < 0.01) and pre-operative SEQ (p = 0.04) were predictive. CONCLUSION: Various factors are involved in determining the myopic refractive error after phacovitrectomy. Not every factor seems to be as important in each individual patient, suggesting a more tailored approach is warranted to overcome this problem.

5.
Transl Vis Sci Technol ; 5(4): 9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27540495

RESUMO

PURPOSE: Little is known about the way orbital fat slides and/or deforms during eye movements. We compared two deformation algorithms from a sequence of MRI volumes to visualize this complex behavior. METHODS: Time-dependent deformation data were derived from motion-MRI volumes using Lucas and Kanade Optical Flow (LK3D) and nonrigid registration (B-splines) deformation algorithms. We compared how these two algorithms performed regarding sliding and deformation in three critical areas: the sclera-fat interface, how the optic nerve moves through the fat, and how the fat is squeezed out under the tendon of a relaxing rectus muscle. The efficacy was validated using identified tissue markers such as the lens and blood vessels in the fat. RESULTS: Fat immediately behind the eye followed eye rotation by approximately one-half. This was best visualized using the B-splines technique as it showed less ripping of tissue and less distortion. Orbital fat flowed around the optic nerve during eye rotation. In this case, LK3D provided better visualization as it allowed orbital fat tissue to split. The resolution was insufficient to visualize fat being squeezed out between tendon and sclera. CONCLUSION: B-splines performs better in tracking structures such as the lens, while LK3D allows fat tissue to split as should happen as the optic nerve slides through the fat. Orbital fat follows eye rotation by one-half and flows around the optic nerve during eye rotation. TRANSLATIONAL RELEVANCE: Visualizing orbital fat deformation and sliding offers the opportunity to accurately locate a region of cicatrization and permit an individualized surgical plan.

6.
Radiat Res ; 177(3): 272-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22214381

RESUMO

Radiation combined with chemotherapy (neo-CRT) is increasingly the standard of care for the treatment of esophageal cancer, either as neoadjuvant therapy in multimodal protocols or as primary therapy. Unfortunately, ~60% of patients demonstrate little or no response to neo-CRT. Accordingly, understanding the molecular mechanisms of resistance to therapy may underpin significant advances through the identification of nonresponders either before or early in treatment. We previously identified the RNPC1 gene, which is important in stabilizing p21, as being upregulated in the tumors of esophageal cancer patients who had a poor response to neo-CRT. We hypothesize that RNPC1 contributes to resistance to radiation therapy through a p21-mediated cell cycle accumulation/arrest mechanism. Analysis revealed that p53 and RNPC1 expression were highest in the JH-EsoAd1 cell line and lowest in OE19 cells. This was associated with accumulation of cells in G0/G1. p21 expression, which was highest in OE19 cells and lowest in OE33 cells, was associated with relative intrinsic sensitivity to radiation. OE33 cells were transfected with a plasmid (pCMV6-AC-GFP) encoding a C-terminal GFP-tagged RNPC1, and overexpression was confirmed by qPCR and fluorescence microscopy. Overexpression of RNPC1-GFP resulted in significantly increased levels of the p21 transcript and protein through a direct physical interaction between the RNPC1 protein and the p21 transcript. Furthermore, RNPC1 overexpression led to significant G0/G1 cell cycle accumulation and significantly enhanced cellular resistance to radiation. We conclude that RNPC1 contributes to tumor resistance to radiotherapy, which likely occurs through a p21-mediated G0/G1 accumulation mechanism. Therefore, RNPC1 may represent a potential therapeutic target for enhancing tumor sensitivity to radiation.


Assuntos
Adenocarcinoma/patologia , Pontos de Checagem do Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Neoplasias Esofágicas/patologia , Proteínas de Ligação a RNA/metabolismo , Tolerância a Radiação , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Linhagem Celular Tumoral , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Fase G1 , Regulação Neoplásica da Expressão Gênica , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Fase de Repouso do Ciclo Celular , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA