Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Small ; 19(11): e2204850, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642858

RESUMO

Three-dimensional topological insulators (3D TI) exhibit conventional parabolic bulk bands and protected Dirac surface states. A thorough investigation of the different transport channels provided by the bulk and surface carriers using macroscopic samples may provide a path toward accessing superior surface transport properties. Bi2 Te3 materials make promising 3D TI models; however, due to their complicated defect chemistry, these materials have a high number of charge carriers in the bulk that dominate the transport, even as nanograined structures. To partially control the bulk charge carrier density, herein the synthesis of Te-enriched Bi2 Te3 nanoparticles is reported. The resulting nanoparticles are compacted into nanograined pellets of varying porosity to tailor the surface-to-volume ratio, thereby emphasizing the surface transport channels. The nanograined pellets are characterized by a combination of resistivity, Hall- and magneto-conductance measurements together with (THz) time-domain reflectivity measurements. Using the Hikami-Larkin-Nagaoka (HLN) model, a characteristic coherence length of ≈200 nm is reported that is considerably larger than the diameter of the nanograins. The different contributions from the bulk and surface carriers are disentangled by THz spectroscopy, thus emphasizing the dominant role of the surface carriers. The results strongly suggest that the surface transport carriers have overcome the hindrance imposed by nanoparticle boundaries.

2.
Nano Lett ; 22(3): 1287-1293, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35044780

RESUMO

Graphene and other single-layer structures are pursued as high-flux separation membranes, although imparting porosity endangers their crystalline integrity. In contrast, bilayer silica composed of corner-sharing (SiO4) units is foreseen to be permeable for small molecules due to its intrinsic lattice openings. This study sheds light on the mass transport properties of freestanding 2D SiO2 upon using atomic layer deposition (ALD) to grow large-area films on Au/mica substrates followed by transfer onto Si3N4 windows. Permeation experiments with gaseous and vaporous substances reveal the suspended material to be porous, but the membrane selectivity appears to diverge from the size exclusion principle. Whereas the passage of inert gas molecules is hindered with a permeance below 10-7 mol·s-1·m-2·Pa-1, condensable species like water are found to cross vitreous bilayer silica a thousand times faster in accordance with their superficial affinity. This work paves the way for bilayer oxides to be addressed as inherent 2D membranes.


Assuntos
Grafite , Dióxido de Silício , Gases/química , Óxidos , Porosidade , Dióxido de Silício/química
3.
Entropy (Basel) ; 23(4)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919678

RESUMO

Hysteresis and transformation behavior were studied in epitaxial NiCoMnAl magnetic shape memory alloy thin films with varying number martensitic intercalations (MIs) placed in between. MIs consists of a different NiCoMnAl composition with a martensitic transformation occurring at much higher temperature than the host composition. With increasing number of intercalations, we find a decrease in hysteresis width from 17 K to 10 K. For a large difference in the layers thicknesses this is accompanied by a larger amount of residual austenite. If the thicknesses become comparable, strain coupling between them dominates the transformation process, which manifests in a shift of the hysteresis to higher temperatures, splitting of the hysteresis in sub hysteresis and a decrease in residual austenite to almost 0%. A long-range ordering of martensite and austenite regions in the shape of a 3D checker board pattern is formed at almost equal thicknesses.

4.
Sensors (Basel) ; 20(16)2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824330

RESUMO

In this review article, we conceptually investigated the requirements of magnetic nanoparticles for their application in biosensing and related them to example systems of our thin-film portfolio. Analyzing intrinsic magnetic properties of different magnetic phases, the size range of the magnetic particles was determined, which is of potential interest for biosensor technology. Different e-beam lithography strategies are utilized to identify possible ways to realize small magnetic particles targeting this size range. Three different particle systems from 500 µm to 50 nm are produced for this purpose, aiming at tunable, vertically magnetized synthetic antiferromagnets, martensitic transformation in a single elliptical, disc-shaped Heusler Ni50Mn32.5Ga17.5 particle and nanocylinders of Co2MnSi-Heusler compound. Perspectively, new applications for these particle systems in combination with microfluidics are addressed. Using the concept of a magnetic on-off ratchet, the most suitable particle system of these three materials is validated with respect to magnetically-driven transport in a microfluidic channel. In addition, options are also discussed for improving the magnetic ratchet for larger particles.


Assuntos
Técnicas Biossensoriais , Magnetismo , Microfluídica , Fenômenos Magnéticos , Tamanho da Partícula , Fenômenos Físicos
5.
Nanomedicine ; 17: 319-328, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30771503

RESUMO

Bone regeneration is a highly orchestrated process crucial for endogenous healing procedures after accidents, infections or tumor therapy. Changes in surface nanotopography are known to directly affect the formation of osteogenic cell types, although no direct linkage to the endogenous nanotopography of bone was described so far. Here we show the presence of pores of 31.93 ±â€¯0.97 nm diameter on the surface of collagen type I fibers, the organic component of bone, and demonstrate these pores to be sufficient to induce osteogenic differentiation of adult human stem cells. We further applied SiO2 nanoparticles thermally cross-linked to a nanocomposite to artificially biomimic 31.93 ±â€¯0.97 nm pores, which likewise led to in vitro production of bone mineral by adult human stem cells. Our findings show an endogenous mechanism of directing osteogenic differentiation of adult stem cells by nanotopological cues and provide a direct application using SiO2 nanocomposites with surface nanotopography biomimicking native bone architecture.


Assuntos
Células-Tronco Adultas/citologia , Colágeno Tipo I/ultraestrutura , Nanoporos/ultraestrutura , Osteogênese , Adulto , Materiais Biocompatíveis/química , Regeneração Óssea , Células Cultivadas , Colágeno Tipo I/química , Humanos , Nanocompostos/química , Nanocompostos/ultraestrutura , Porosidade , Dióxido de Silício/química , Alicerces Teciduais/química
6.
Nano Lett ; 18(2): 1264-1268, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29365261

RESUMO

Topological crystalline insulators represent a new state of matter, in which the electronic transport is governed by mirror-symmetry protected Dirac surface states. Due to the helical spin-polarization of these surface states, the proximity of topological crystalline matter to a nearby superconductor is predicted to induce unconventional superconductivity and, thus, to host Majorana physics. We report on the preparation and characterization of Nb-based superconducting quantum interference devices patterned on top of topological crystalline insulator SnTe thin films. The SnTe films show weak anti-localization, and the weak links of the superconducting quantum interference devices (SQUID) exhibit fully gapped proximity-induced superconductivity. Both properties give a coinciding coherence length of 120 nm. The SQUID oscillations induced by a magnetic field show 2π periodicity, possibly dominated by the bulk conductivity.

7.
Nanomedicine ; 14(4): 1417-1427, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29689371

RESUMO

Gliadin, an immunogenic protein present in wheat, is not fully degraded by humans and after the normal gastric and pancreatic digestion, the immunodominant 33-mer gliadin peptide remains unprocessed. The 33-mer gliadin peptide is found in human faeces and urine, proving not only its proteolytic resistance in vivo but more importantly its transport through the entire human body. Here, we demonstrate that 33-mer supramolecular structures larger than 220 nm induce the overexpression of nuclear factor kappa B (NF-κB) via a specific Toll-like Receptor (TLR) 2 and (TLR) 4 dependent pathway and the secretion of pro-inflammatory cytokines such as IP-10/CXCL10 and TNF-α. Using helium ion microscopy, we elucidated the initial stages of oligomerisation of 33-mer gliadin peptide, showing that rod-like oligomers are nucleation sites for protofilament formation. The relevance of the 33-mer supramolecular structures in the early stages of the disease is paving new perspectives in the understanding of gluten-related disorders.


Assuntos
Gliadina/metabolismo , Macrófagos/metabolismo , Receptores Toll-Like/metabolismo , Humanos , Imunidade Inata/fisiologia , NF-kappa B/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Sensors (Basel) ; 16(6)2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27322277

RESUMO

The giant magnetoresistance (GMR) effect is a very basic phenomenon that occurs in magnetic materials ranging from nanoparticles over multilayered thin films to permanent magnets. In this contribution, we first focus on the links between effect characteristic and underlying microstructure. Thereafter, we discuss design criteria for GMR-sensor applications covering automotive, biosensors as well as nanoparticular sensors.

9.
Sensors (Basel) ; 15(4): 9251-64, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25903554

RESUMO

The formation of magnetic bead or nanoparticle superstructures due to magnetic dipole dipole interactions can be used as configurable matter in order to realize low-cost magnetoresistive sensors with very high GMR-effect amplitudes. Experimentally, this can be realized by immersing magnetic beads or nanoparticles in conductive liquid gels and rearranging them by applying suitable external magnetic fields. After gelatinization of the gel matrix the bead or nanoparticle positions are fixed and the resulting system can be used as a magnetoresistive sensor. In order to optimize such sensor structures we have developed a simulation tool chain that allows us not only to study the structuring process in the liquid state but also to rigorously calculate the magnetoresistive characteristic curves for arbitrary nanoparticle arrangements. As an application, we discuss the role of magnetoresistive sensors in finding answers to molecular recognition.

10.
Biopolymers ; 101(1): 96-106, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23703327

RESUMO

Gliadin, a protein present in wheat, rye, and barley, undergoes incomplete enzymatic degradation during digestion, producing an immunogenic 33-mer peptide, LQLQPF(PQPQLPY)3 PQPQPF. The special features of 33-mer that provoke a break in its tolerance leading to gliadin sensitivity and celiac disease remains elusive. Herein, it is reported that 33-mer gliadin peptide was not only able to fold into polyproline II secondary structure but also depending on concentration resulted in conformational transition and self-assembly under aqueous condition, pH 7.0. A 33-mer dimer is presented as one initial possible step in the self-assembling process obtained by partial electrostatics charge distribution calculation and molecular dynamics. In addition, electron microscopy experiments revealed supramolecular organization of 33-mer into colloidal nanospheres. In the presence of 1 mM sodium citrate, 1 mM sodium borate, 1 mM sodium phosphate buffer, 15 mM NaCl, the nanospheres were stabilized, whereas in water, a linear organization and formation of fibrils were observed. It is hypothesized that the self-assembling process could be the result of the combination of hydrophobic effect, intramolecular hydrogen bonding, and electrostatic complementarity due to 33-mer's high content of proline and glutamine amino acids and its calculated nonionic amphiphilic character. Although, performed in vitro, these experiments have revealed new features of the 33-mer gliadin peptide that could represent an important and unprecedented event in the early stage of 33-mer interaction with the gut mucosa prior to onset of inflammation. Moreover, these findings may open new perspectives for the understanding and treatment of gliadin intolerance disorders.


Assuntos
Dicroísmo Circular , Gliadina , Microscopia Eletrônica , Fragmentos de Peptídeos/química , Peptídeos/química
11.
Nanomaterials (Basel) ; 14(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38202571

RESUMO

Our paper introduces a simulation-based framework designed to interpret differential phase contrast (DPC) magnetic imaging within the transmission electron microscope (TEM). We investigate patterned magnetic membranes, particularly focusing on nano-patterned Co70Fe30 thin-film membranes fabricated via focused ion beam (FIB) milling. Our direct magnetic imaging reveals regular magnetic domain patterns in these carefully prepared systems. Notably, the observed magnetic structure aligns precisely with micromagnetic simulations based on the dimensions of the underlying nanostructures. This agreement emphasizes the usefulness of micromagnetic simulations, not only for the interpretation of DPC data, but also for the prediction of possible microstructures in magnetic sensor systems with nano-patterns.

12.
Microorganisms ; 12(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38930623

RESUMO

Sigma factors are transcriptional regulators that are part of complex regulatory networks for major cellular processes, as well as for growth phase-dependent regulation and stress response. Actinoplanes sp. SE50/110 is the natural producer of acarbose, an α-glucosidase inhibitor that is used in diabetes type 2 treatment. Acarbose biosynthesis is dependent on growth, making sigma factor engineering a promising tool for metabolic engineering. ACSP50_0507 is a homolog of the developmental and osmotic-stress-regulating Streptomyces coelicolor σHSc. Therefore, the protein encoded by ACSP50_0507 was named σHAs. Here, an Actinoplanes sp. SE50/110 expression strain for the alternative sigma factor gene ACSP50_0507 (sigHAs) achieved a two-fold increased acarbose yield with acarbose production extending into the stationary growth phase. Transcriptome sequencing revealed upregulation of acarbose biosynthesis genes during growth and at the late stationary growth phase. Genes that are transcriptionally activated by σHAs frequently code for secreted or membrane-associated proteins. This is also mirrored by the severely affected cell morphology, with hyperbranching, deformed and compartmentalized hyphae. The dehydrated cell morphology and upregulation of further genes point to a putative involvement in osmotic stress response, similar to its S. coelicolor homolog. The DNA-binding motif of σHAs was determined based on transcriptome sequencing data and shows high motif similarity to that of its homolog. The motif was confirmed by in vitro binding of recombinantly expressed σHAs to the upstream sequence of a strongly upregulated gene. Autoregulation of σHAs was observed, and binding to its own gene promoter region was also confirmed.

13.
ACS Appl Bio Mater ; 7(2): 839-852, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38253353

RESUMO

Implant-related infections or inflammation are one of the main reasons for implant failure. Therefore, different concepts for prevention are needed, which strongly promote the development and validation of improved material designs. Besides modifying the implant surface by, for example, antibacterial coatings (also implying drugs) for deterring or eliminating harmful bacteria, it is a highly promising strategy to prevent such implant infections by antibacterial substrate materials. In this work, the inherent antibacterial behavior of the as-cast biodegradable Fe69Mn30C1 (FeMnC) alloy against Gram-negative Pseudomonas aeruginosa and Escherichia coli as well as Gram-positive Staphylococcus aureus is presented for the first time in comparison to the clinically applied, corrosion-resistant AISI 316L stainless steel. In the second step, 3.5 wt % Cu was added to the FeMnC reference alloy, and the microbial corrosion as well as the proliferation of the investigated bacterial strains is further strongly influenced. This leads for instance to enhanced antibacterial activity of the Cu-modified FeMnC-based alloy against the very aggressive, wild-type bacteria P. aeruginosa. For clarification of the bacterial test results, additional analyses were applied regarding the microstructure and elemental distribution as well as the initial corrosion behavior of the alloys. This was electrochemically investigated by a potentiodynamic polarization test. The initial degraded surface after immersion were analyzed by glow discharge optical emission spectrometry and transmission electron microscopy combined with energy-dispersive X-ray analysis, revealing an increase of degradation due to Cu alloying. Due to their antibacterial behavior, both investigated FeMnC-based alloys in this study are attractive as a temporary implant material.


Assuntos
Ligas , Próteses e Implantes , Ligas/química , Antibacterianos/farmacologia , Antibacterianos/química
14.
Phys Chem Chem Phys ; 15(16): 5873-87, 2013 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-23486888

RESUMO

Ice nucleation was investigated experimentally in water droplets with diameters between 53 and 96 micrometres. The droplets were produced in a microfluidic device in which a flow of methyl-cyclohexane and water was combined at the T-junction of micro-channels yielding inverse (water-in-oil) emulsions consisting of water droplets with small standard deviations. In cryo-microscopic experiments we confirmed that upon cooling of such emulsion samples ice nucleation in individual droplets occurred independently of each other as required for the investigation of a stochastic process. The emulsion samples were then subjected to cooling at 1 Kelvin per minute in a differential scanning calorimeter with high temperature accuracy. From the latent heat released by freezing water droplets we inferred the volume-dependent homogeneous ice nucleation rate coefficient of water at temperatures between 236.5 and 237.9 Kelvin. A comparison of our newly derived values to existing rate coefficients from other studies suggests that the volume-dependent ice nucleation rate in supercooled water is slightly lower than previously thought. Moreover, a comprehensive error analysis suggests that absolute temperature accuracy is the single most important experimental parameter determining the uncertainty of the derived ice nucleation rates in our experiments, and presumably also in many previous experiments. Our analysis, thus, also provides a route for improving the accuracy of future ice nucleation rate measurements.


Assuntos
Água/química , Varredura Diferencial de Calorimetria , Cicloexanos/química , Congelamento , Técnicas Analíticas Microfluídicas , Temperatura , Incerteza
15.
Polymers (Basel) ; 15(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904487

RESUMO

The performance of plastic components in water-bearing parts of industrial and household appliances, often in the presence of harsh environments and elevated temperatures, critically relies on the mechanical and thermal polymer stability. In this light, the precise knowledge of aging properties of polymers formulated with dedicated antiaging additive packages as well as various fillers is crucial for long-time device warranty. We investigated and analysed the time-dependent, polymer-liquid interface aging of different industrial performance polypropylene samples in aqueous detergent solution at high temperatures (95 °C). Special emphasis was put on the disadvantageous process of consecutive biofilm formation that often follows surface transformation and degradation. Atomic force microscopy, scanning electron microscopy, and infrared spectroscopy were used to monitor and analyse the surface aging process. Additionally, bacterial adhesion and biofilm formation was characterised by colony forming unit assays. One of the key findings is the observation of crystalline, fibre-like growth of ethylene bis stearamide (EBS) on the surface during the aging process. EBS is a widely used process aid and lubricant enabling the proper demoulding of injection moulding plastic parts. The aging-induced surface-covering EBS layers changed the surface morphology and promoted bacterial adhesion as well as biofilm formation of Pseudomonas aeruginosa.

16.
Nanoscale Adv ; 5(21): 5900-5906, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37881710

RESUMO

Nanofibers are currently among the most researched nanomaterials in materials science. Various high-resolution microscopy techniques are used for morphological investigations, with the diameter as primary characteristic. Since methodological factors influencing the diameter distribution are usually ignored, numerical values can hardly be compared across different or even within single studies. Here, we investigate influencing factors such as microscopy technique, degree of magnification, eventual coatings, and the analysts' bias in the image selection and evaluation. We imaged a single nanofiber sample using scanning electron microscopy (SEM), helium ion microscopy (HIM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). These techniques yield significant methodological variations between the diameter distributions. We further observed a strong influence of analysts' subjectivity, with a consistent average deviation between 4 different analysts of up to 31%. The average deviation between micrographs within each category was 14%, revealing a considerable influence of micrograph selection and strong potential for cherry picking. The mean values were mostly comparable with the results using automated image analysis software, which was more reproducible, much faster, and more accurate for images with lower magnification. The results demonstrate that one of the most frequently measured characteristics of nanofibers is subject to strong systematic fluctuations that are rarely if ever addressed.

17.
RSC Adv ; 13(21): 14181-14189, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37180004

RESUMO

Hydrothermal carbonization (HTC) is an efficient thermochemical method for the conversion of organic feedstock to carbonaceous solids. HTC of different saccharides is known to produce microspheres (MS) with mostly Gaussian size distribution, which are utilized as functional materials in various applications, both as pristine MS and as a precursor for hard carbon MS. Although the average size of the MS can be influenced by adjusting the process parameters, there is no reliable mechanism to affect their size distribution. Our results demonstrate that HTC of trehalose, in contrast to other saccharides, results in a distinctly bimodal sphere diameter distribution consisting of small spheres with diameters of (2.1 ± 0.2) µm and of large spheres with diameters of (10.4 ± 2.6) µm. Remarkably, after pyrolytic post-carbonization at 1000 °C the MS develop a multimodal pore size distribution with abundant macropores > 100 nm, mesopores > 10 nm and micropores < 2 nm, which were examined by small-angle X-ray scattering and visualized by charge-compensated helium ion microscopy. The bimodal size distribution and hierarchical porosity provide an extraordinary set of properties and potential variables for the tailored synthesis of hierarchical porous carbons, making trehalose-derived hard carbon MS a highly promising material for applications in catalysis, filtration, and energy storage devices.

18.
Chemistry ; 18(3): 814-21, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-22213584

RESUMO

Switchable fluorescent silica nanoparticles have been prepared by covalently incorporating a fluorophore and a photochromic compound inside the particle core. The fluorescence can be switched reversibly between an on- and off-state via energy transfer. The particles were synthesized using different amounts of the photoswitchable compound (spiropyran) and the fluorophore (rhodamine B) in a size distribution between 98 and 140 nm and were characterized in terms of size, switching properties, and fluorescence efficiency by TEM, and UV\Vis and fluorescence spectroscopy.


Assuntos
Corantes Fluorescentes/síntese química , Nanopartículas/química , Rodaminas/síntese química , Dióxido de Silício/síntese química , Benzopiranos/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Indóis/química , Estrutura Molecular , Nanopartículas/ultraestrutura , Nitrocompostos/química , Rodaminas/química , Dióxido de Silício/química , Espectrometria de Fluorescência
19.
Microorganisms ; 10(2)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35208893

RESUMO

The COVID-19 Pandemic leads to an increased worldwide demand for personal protection equipment in the medical field, such as face masks. New approaches to satisfy this demand have been developed, and one example is the use of 3D printing face masks. The reusable 3D printed mask may also have a positive effect on the environment due to decreased littering. However, the microbial load on the 3D printed objects is often disregarded. Here we analyze the biofilm formation of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli on suspected antimicrobial Plactive™ PLA 3D printing filaments and non-antimicrobial Giantarm™ PLA. To characterize the biofilm-forming potential scanning electron microscopy (SEM), Confocal scanning electron microscopy (CLSM) and colony-forming unit assays (CFU) were performed. Attached cells could be observed on all tested 3D printing materials. Gram-negative strains P. aeruginosa and E. coli reveal a strong uniform growth independent of the tested 3D filament (for P. aeruginosa even with stressed induced growth reaction by Plactive™). Only Gram-positive S. aureus shows strong growth reduction on Plactive™. These results suggest that the postulated antimicrobial Plactive™ PLA does not affect Gram-negative bacteria species. These results indicate that reusable masks, while better for our environment, may pose another health risk.

20.
Microorganisms ; 10(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36363812

RESUMO

Microorganisms forming a biofilm might become multidrug-resistant by information exchange. Multi-resistant, biofilm-producing microorganisms are responsible for a major portion of hospital-acquired infections. Additionally, these microorganisms cause considerable damage in the industrial sector. Here, we screened several nanoparticles of transition metals for their antibacterial properties. The nanoparticles sizes of nickel (<300 nm) and nickel oxide (<50 nm) were analyzed with transmission electron microscopy. We could show that the antibacterial efficacy of nickel and nickel oxide nanoparticles on Pseudomonas aeruginosa isolated from household appliances and Staphylococcus aureus was the highest. Interestingly, only P. aeruginosa was able to survive at high concentrations (up to 50 mM) due to clustering toxic nanoparticles out of the medium by biofilm formation. This clustering served to make the medium nearly free of nanoparticles, allowing the bacteria to continue living without contact to the stressor. We observed these clusters by CLSM, SEM, and light microscopy. Moreover, we calculated the volume of NiO particles in the bacterial biofilms based on an estimated thickness of 5 nm from the TEM images as an average volume of 3.5 × 10−6 µm3. These results give us a new perspective on bacterial defense mechanisms and might be useful in industries such as water purification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA