RESUMO
The sterile alpha motif and histidine-aspartic domain-containing protein 1 (SAMHD1) has been demonstrated to predict the response to high-dose cytarabine consolidation treatment in acute myeloid leukemia patients. Here, we evaluated SAMHD1 as potential biomarker for the response to high-dose cytarabine in mantle cell lymphoma (MCL) patients. We quantified SAMHD1 protein expression and determined the mutation status in patients of the MCL Younger and Elderly trials (n = 189), who had received high-dose cytarabine- or fludarabine-based polychemotherapy. Additionally, we quantified SAMHD1 expression in B cell lymphoma cell lines and exposed them to cytarabine, fludarabine, and clinically relevant combinations. Across both trials investigated, SAMHD1 mutations had a frequency of 7.1% (n = 13) and did not significantly affect the failure-free survival (FFS, P = .47). In patients treated with high-dose cytarabine- or fludarabine-containing regimes, SAMHD1 expression was not significantly associated with FFS or complete remission rate. SAMHD1 expression in B cell lymphoma cell lines, however, inversely correlated with their in vitro response to cytarabine as single agent (R = .65, P = .0065). This correlation could be reversed by combining cytarabine with other chemotherapeutics, such as oxaliplatin and vincristine, similar to the treatment regime of the MCL Younger trial. We conclude that this might explain why we did not observe a significant association between SAMHD1 protein expression and the outcome of MCL patients upon cytarabine-based treatment.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Linfoma de Células B/tratamento farmacológico , Linfoma de Célula do Manto/tratamento farmacológico , Proteína 1 com Domínio SAM e Domínio HD/genética , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Citarabina/farmacologia , Citarabina/uso terapêutico , Análise Mutacional de DNA , Intervalo Livre de Doença , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Linfoma de Células B/genética , Linfoma de Células B/patologia , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/mortalidade , Masculino , Pessoa de Meia-Idade , Mutação , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Prednisona/farmacologia , Prednisona/uso terapêutico , Cultura Primária de Células , Rituximab/farmacologia , Rituximab/uso terapêutico , Análise Serial de Tecidos , Vidarabina/análogos & derivados , Vidarabina/farmacologia , Vidarabina/uso terapêutico , Vincristina/farmacologia , Vincristina/uso terapêuticoRESUMO
In situ follicular neoplasia (ISFN) is the earliest morphologically identifiable precursor of follicular lymphoma (FL). Although it is genetically less complex than FL and has low risk for progression, ISFN already harbors secondary genetic alterations, in addition to the defining t(14;18)(q32;q21) translocation. FL, in turn, frequently progresses to diffuse large B-cell lymphoma (DLBCL) or high-grade B-cell lymphoma (HGBL). By BCL2 staining of available reactive lymphoid tissue obtained at any time point in patients with aggressive B-cell lymphoma (BCL), we identified ten paired cases of ISFN and DLBCL/HGBL, including six de novo tumors and four tumors transformed from FL as an intermediate step, and investigated their clonal evolution using microdissection and next-generation sequencing. A clonal relationship between ISFN and aggressive BCL was established by immunoglobulin and/or BCL2 rearrangements and/or the demonstration of shared somatic mutations for all ten cases. Targeted sequencing revealed CREBBP, KMT2D, EZH2, TNFRSF14 and BCL2 as the genes most frequently mutated already in ISFN. Based on the distribution of private and shared mutations, two patterns of clonal evolution were evident. In most cases, the aggressive lymphoma, ISFN and, when present, FL revealed divergent evolution from a common progenitor, whereas linear evolution with sequential accumulation of mutations was less frequent. In conclusion, we demonstrate for the first time that t(14;18)+ aggressive BCL can arise from ISFN without clinically evident FL as an intermediate step and that during this progression, branched evolution is common.
Assuntos
Linfoma Folicular , Linfoma Difuso de Grandes Células B , Evolução Molecular , Centro Germinativo , Humanos , Linfoma Folicular/genética , Translocação GenéticaRESUMO
Burkitt lymphoma (BL) is a B cell lymphoma composed of monomorphic medium-sized blastic cells with basophilic cytoplasm and a high proliferation index. BL has a characteristic immunophenotype of CD10 and BCL6 positive and BCL2 negative and harbours MYC gene rearrangements (MYCR) in >90% of the cases. Owing to its highly aggressive nature, intensified chemotherapy regimens are usually administered, requiring an exact diagnosis. Since the diagnosis usually warrants an integration of morphologic, immunophenotypic and genetic findings and because there is a morphologic overlap with the new WHO category of high-grade B cell lymphoma, not otherwise specified (HGBL, NOS) and some cases of diffuse large B cell lymphoma (DLBCL), we wanted to test the distinctiveness of the CD10+, BCL6+, BCL2- and MYCR positive immunopheno-genotype in a large cohort of >1000 DLBCL and HGBL. Only 9/982 DLBCL classified by an expert panel of haematopathologists (0.9%) displayed a single MYCR and were CD10+, BCL6+ and BCL2-. In a similar fashion, only one out of 32 HGBL, NOS (3%) displayed the "Burkitt-like" genetic/immunophenotypic constitution. The samples of non-BL showing the BL-typic immunopheno-genotype, interestingly, harboured higher copy number variations (CNV) by OncoScan analysis (mean 7.3 CNVs/sample; range: 2-13 vs. 2.4; range 0-6) and were also distinct from pleomorphic BL cases regarding their mutational spectrum by NGS analysis. This implies that the characteristic immunophenotype of BL, in concert with a single MYCR, is uncommon in these aggressive lymphomas, and that this constellation favours BL.
Assuntos
Biomarcadores Tumorais , Linfoma de Burkitt/genética , Linfoma de Burkitt/imunologia , Variações do Número de Cópias de DNA , Dosagem de Genes , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/imunologia , Mutação , Antígenos CD20/análise , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Linfoma de Burkitt/patologia , Análise Mutacional de DNA , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Imunofenotipagem , Hibridização in Situ Fluorescente , Linfoma Difuso de Grandes Células B/patologia , Gradação de Tumores , Neprilisina/análise , Fenótipo , Proteínas Proto-Oncogênicas c-bcl-2/análise , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-6/análise , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-myc/genética , Estudos RetrospectivosRESUMO
Rare cases of aggressive B-cell lymphomas with a morphology similar to Burkitt lymphoma (BL) present with the BL-typical immunophenotype, but lacked MYC translocation (MYC-negative Burkitt-like lymphoma: mnBLL). A proportion of those with an imbalance pattern in chromosome 11q has been designated Burkitt-like lymphoma with 11q aberration in the recent update of the World Health Organization (WHO) classification. Because of the problems in the identification of Burkitt-like lymphoma with 11q aberration, our goal was to retrospectively analyze their frequency in a cohort of "candidate" aggressive lymphomas (cohort 1, n=35) such as mnBLL (n=16), diffuse large B-cell lymphoma with similarities to Burkitt lymphoma (DLBCL-BL; n=3), high-grade B-cell lymphomas, not otherwise specified (NOS) (n=16), as well as in a cohort of MYC-negative diffuse large B-cell lymphoma NOS (cohort 2, n=62). In total, 17/33 cohort 1 cases (52%) harbored the typical 11q aberration pattern, predominantly those that had been classified as mnBLL (12/16, 75%), but also as DLBCL-BL (2/3, 67%) and high-grade B-cell lymphomas, NOS (3/14; 21%). The specimens with this typical 11q aberration pattern were usually negative for the BCL2 protein. Of interest and as a new finding, samples harboring the 11q aberration pattern were often characterized by strikingly coarse apoptotic debris within starry sky macrophages facilitating their recognition. In contrast, only 1 of 62 garden variety DLBCL, NOS was positive for the 11q aberration pattern. In 2 DLBCL-BL, a dual MYC translocation/11q aberration pattern was detected. As a diagnostic algorithm, we, therefore, propose analysis of 11q status in MYC-negative high-grade lymphomas with features of BL, especially showing BCL2 negativity and a conspicuous coarse apoptotic debris in starry sky macrophages.
Assuntos
Linfoma de Burkitt/genética , Aberrações Cromossômicas , Cromossomos Humanos Par 11 , Linfoma Difuso de Grandes Células B/genética , Técnicas de Diagnóstico Molecular , Apoptose , Linfoma de Burkitt/classificação , Linfoma de Burkitt/patologia , Predisposição Genética para Doença , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Linfoma Difuso de Grandes Células B/classificação , Linfoma Difuso de Grandes Células B/patologia , Gradação de Tumores , Fenótipo , Valor Preditivo dos Testes , Estudos Retrospectivos , Terminologia como Assunto , Macrófagos Associados a TumorRESUMO
Diffuse large B-cell lymphoma (DLBCL) is a disease with heterogeneous outcome. Stromal signatures have been correlated to survival in DLBCL. Their use, however, is hampered by the lack of assays for formalin-fixed paraffin-embedded material (FFPE). We constructed a lymphoma-associated macrophage interaction signature (LAMIS) interrogating features of the microenvironment using a NanoString assay applicable to FFPE. The clinical impact of the signature could be validated in a cohort of 466 patients enrolled in prospective clinical trials of the German High-Grade Non-Hodgkin Lymphoma Study Group (DSHNHL). Patients with high expression of the signature (LAMIShigh) had shorter EFS, PFS, and OS. Multivariate analyses revealed independence from IPI factors in EFS (HR 1.7, 95% CI 1.2-2.4, p-value = 0.001), PFS (HR 1.8, 95% CI 1.2-2.5, p-value = 0.001) and OS (HR 1.8, 95% CI 1.3-2.7, p-value = 0.001). Multivariate analyses adjusted for the IPI factors showed the signature to be independent from COO, MYC rearrangements and double expresser status (DE). LAMIShigh and simultaneous DE status characterized a patient subgroup with dismal prognosis and early relapse. Our data underline the importance of the microenvironment in prognosis. Combined analysis of stromal features, the IPI and DE may provide a new rationale for targeted therapy.
Assuntos
Linfoma Difuso de Grandes Células B/patologia , Linfoma não Hodgkin/patologia , Macrófagos/patologia , Feminino , Humanos , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma não Hodgkin/metabolismo , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Microambiente Tumoral/fisiologiaRESUMO
Diffuse large B-cell lymphoma (DLBCL) is subdivided by gene expression analysis (GEP) into two molecular subtypes named germinal center B-cell-like (GCB) and activated B-cell-like (ABC) after their putative cell-of-origin (COO). Determination of the COO is considered mandatory in any new-diagnosed DLBCL, not otherwise specified according to the updated WHO classification. Despite the fact that pathologists are free to choose the method for COO classification, immunohistochemical (IHC) assays are most widely used. However, to the best of our knowledge, no round-robin test to evaluate the interlaboratory variability has been published so far. Eight hematopathology laboratories participated in an interlaboratory test for COO classification of 10 DLBCL tumors using the IHC classifier comprising the expression of CD10, BCL6, and MUM1 (so-called Hans classifier). The results were compared with GEP for COO signature and, in a subset, with results obtained by image analysis. In 7/10 cases (70%), at least seven laboratories assigned a given case to the same COO subtype (one center assessed one sample as not analyzable), which was in agreement with the COO subtype determined by GEP. The results in 3/10 cases (30%) revealed discrepancies between centers and/or between IHC and GEP subtype. Whereas the CD10 staining results were highly reproducible, staining for MUM1 was inconsistent in 50% and for BCL6 in 40% of cases. Image analysis of 16 slides stained for BCL6 (N = 8) and MUM1 (N = 8) of the two cases with the highest disagreement in COO classification were in line with the score of the pathologists in 14/16 stainings analyzed (87.5%). This study describes the first round-robin test for COO subtyping in DLBCL using IHC and demonstrates that COO classification using the Hans classifier yields consistent results among experienced hematopathologists, even when variable staining protocols are used. Data from this small feasibility study need to be validated in larger cohorts.