Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 17(1): 109-117, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31816245

RESUMO

The endothelin (ET) axis plays a pivotal role in cardiovascular diseases. Enhanced levels of circulating ET-1 have been correlated with an inferior clinical outcome after myocardial infarction (MI) in humans. Thus, the evaluation of endothelin-A receptor (ETAR) expression over time in the course of myocardial injury and healing may offer valuable information toward the understanding of the ET axis involvement in MI. We developed an approach to track the expression of ETAR with a customized molecular imaging probe in a murine model of MI. The small molecular probe based on the ETAR-selective antagonist 3-(1,3-benzodioxol-5-yl)-5-hydroxy-5-(4-methoxyphenyl)-4-[(3,4,5-trimethoxyphenyl)methyl]-2(5H)-furanone (PD156707) was labeled with fluorescent dye, IRDye800cw. Mice undergoing permanent ligation of the left anterior descending artery (LAD) were investigated at day 1, 7, and 21 post surgery after receiving an intravenous injection of the ETAR probe. Cryosections of explanted hearts were analyzed by cryotome-based CCD, and fluorescence reflectance imaging (FRI) and fluorescence signal intensities (SI) were extracted. Fluorescence-mediated tomography (FMT) imaging was performed to visualize probe distribution in the target region in vivo. An enhanced fluorescence signal intensity in the infarct area was detected in cryoCCD images as early as day 1 after surgery and intensified up to 21 days post MI. FRI was capable of detecting significantly enhanced SI in infarcted regions of hearts 7 days after surgery. In vivo imaging by FMT localized enhanced SI in the apex region of infarcted mouse hearts. We verified the localization of the probe and ETAR within the infarct area by immunohistochemistry (IHC). In addition, neovascularized areas were found in the affected myocardium by CD31 staining. Our study demonstrates that the applied fluorescent probe is capable of delineating ETAR expression over time in affected murine myocardium after MI in vivo and ex vivo.


Assuntos
Dioxóis/metabolismo , Antagonistas dos Receptores de Endotelina/administração & dosagem , Corantes Fluorescentes/administração & dosagem , Infarto do Miocárdio/metabolismo , Receptores de Endotelina/metabolismo , Animais , Crioultramicrotomia , Dioxóis/química , Modelos Animais de Doenças , Antagonistas dos Receptores de Endotelina/análise , Antagonistas dos Receptores de Endotelina/química , Feminino , Corantes Fluorescentes/análise , Imuno-Histoquímica , Indóis/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/diagnóstico por imagem , Neovascularização Fisiológica , Imagem Óptica , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo
2.
Mol Imaging Biol ; 22(5): 1235-1243, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32394284

RESUMO

PURPOSE: Myocardial healing following myocardial infarction (MI) is a complex process that is yet to be fully understood. Clinical attempts in regeneration of the injured myocardium using cardiac stem cells faced major challenges, calling for a better understanding of the processes involved at a more basic level in order to foster translation. PROCEDURES: We examined the feasibility of volumetric optoacoustic tomography (VOT) in studying healing of the myocardium in different models of MI, including permanent occlusion (PO) of the left coronary artery, temporary occlusion (ischemia-reperfusion-I/R) and infarcted c-kit mutants, a genetic mouse model with impaired cardiac healing. Murine hearts were imaged at 100 Hz frame rate using 800 nm excitation wavelength, corresponding to the peak absorption of indocyanine green (ICG) in plasma and the isosbestic point of haemoglobin. RESULTS: The non-invasive real-time volumetric imaging capabilities of VOT have allowed the detection of significant variations in the pulmonary transit time (PTT), a parameter affected by MI, across different murine models. Upon intravenous injection of ICG, we were able to track alterations in cardiac perfusion in I/R models, which were absent in wild-type (wt) PO or kitW/kitW-v PO mice. The wt-PO and I/R models further exhibited irregularities in their cardiac cycles. CONCLUSIONS: Clear differences in the PTT, ICG perfusion and cardiac cycle patterns were identified between the different models and days post MI. Overall, the results highlight the unique capacity of VOT for multi-parametric characterization of morphological and functional changes in murine models of MI.


Assuntos
Coração/diagnóstico por imagem , Coração/fisiopatologia , Miocárdio/patologia , Técnicas Fotoacústicas , Tomografia , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/diagnóstico por imagem , Arritmias Cardíacas/fisiopatologia , Modelos Animais de Doenças , Verde de Indocianina/química , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/fisiopatologia , Reperfusão Miocárdica
3.
Sci Rep ; 10(1): 79, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919465

RESUMO

Molecular imaging of atherosclerosis by Magnetic Resonance Imaging (MRI) has been impaired by a lack of validation of the specific substrate responsible for the molecular imaging signal. We therefore aimed to investigate the additive value of mass spectrometry imaging (MSI) of atherosclerosis-affine Gadofluorine P for molecular MRI of atherosclerotic plaques. Atherosclerotic Ldlr-/- mice were investigated by high-field MRI (7 T) at different time points following injection of atherosclerosis-affine Gadofluorine P as well as at different stages of atherosclerosis formation (4, 8, 16 and 20 weeks of HFD). At each imaging time point mice were immediately sacrificed after imaging and aortas were excised for mass spectrometry imaging: Matrix Assisted Laser Desorption Ionization (MALDI) Imaging and Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS) imaging. Mass spectrometry imaging allowed to visualize the localization and measure the concentration of the MR imaging probe Gadofluorine P in plaque tissue ex vivo with high spatial resolution and thus adds novel and more target specific information to molecular MR imaging of atherosclerosis.


Assuntos
Aterosclerose/patologia , Meios de Contraste/metabolismo , Complexos de Coordenação/metabolismo , Fluorocarbonos/metabolismo , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Receptores de LDL/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Aterosclerose/metabolismo , Feminino , Camundongos , Camundongos Knockout
4.
Hum Gene Ther ; 30(1): 44-56, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29916265

RESUMO

Muscle-invasive bladder cancer represents approximately 25% of diagnosed bladder cancer cases and carries a significant risk of death. Oncolytic viruses are novel antitumor agents with the ability to selectively replicate and lyse tumor cells while sparing healthy tissue. We explored the efficiency of the oncolytic YB-1-selective adenovirus XVir-N-31 in vitro and in an orthotopic mouse model for bladder cancer by intramural injection under ultrasound guidance. We demonstrated that XVir-N-31 replicated in bladder cancer cells and induced a stronger immunogenic cell death than wild-type adenovirus by facilitating enhanced release of HMGB1 and exosomal Hsp70. The intratumoral delivery of XVir-N-31 by ultrasound guidance delayed tumor growth in an immunodeficient model, demonstrating the feasibility of this approach to deliver oncolytic viruses directly into the tumor.


Assuntos
Adenoviridae/genética , Terapia Genética , Vetores Genéticos/genética , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Animais , Morte Celular/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Citometria de Fluxo , Imunofluorescência , Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Humanos , Camundongos , Terapia Viral Oncolítica/métodos , Transgenes , Carga Tumoral , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo
5.
Theranostics ; 7(18): 4470-4479, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29158839

RESUMO

Extraction of murine cardiac functional parameters on a beat-by-beat basis is limited with the existing imaging modalities due to insufficient three-dimensional temporal resolution. Faster volumetric imaging methods enabling in vivo characterization of functional parameters are poised to advance cardiovascular research and provide a better understanding of the mechanisms underlying cardiac diseases. We present a new approach based on analyzing contrast-enhanced optoacoustic (OA) images acquired at high volumetric frame rate without using cardiac gating or other approaches for motion correction. We apply an acute murine myocardial infarction model optimized for acquisition of artifact-free optoacoustic imaging data to study cardiovascular hemodynamics. Infarcted hearts (n = 21) could be clearly differentiated from healthy controls (n = 9) based on a significantly higher pulmonary transit time (PTT) (2.25 [2.00-2.41] s versus 1.34 [1.25-1.67] s, p = 0.0235), while no statistically significant difference was observed in the heart rate (318 [252-361] bpm versus 264 [252-320] bpm, p = 0.3129). Nevertheless, nonlinear heartbeat dynamics was stronger in the healthy hearts, as evidenced by the third harmonic component in the heartbeat spectra. MRI data acquired from the same mice further revealed that the PTT increases with the size of infarction and similarly increases with reduced ejection fraction. Moreover, an inverse relationship between infarct PTT and time post-surgery was found, which suggests the occurrence of cardiac healing. In combination with the proven ability of optoacoustics to track targeted probes within the injured myocardium, our method can depict cardiac anatomy, function, and molecular signatures, with both high spatial and temporal resolution. Volumetric four-dimensional optoacoustic characterization of cardiac dynamics with supreme temporal resolution can capture cardiovascular dynamics on a beat-by-beat basis in mouse models of myocardial ischemia.


Assuntos
Coração/fisiopatologia , Infarto do Miocárdio/patologia , Miocárdio/patologia , Animais , Meios de Contraste/metabolismo , Frequência Cardíaca/fisiologia , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA