Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nature ; 605(7908): 152-159, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35477759

RESUMO

Atherosclerotic plaques develop in the inner intimal layer of arteries and can cause heart attacks and strokes1. As plaques lack innervation, the effects of neuronal control on atherosclerosis remain unclear. However, the immune system responds to plaques by forming leukocyte infiltrates in the outer connective tissue coat of arteries (the adventitia)2-6. Here, because the peripheral nervous system uses the adventitia as its principal conduit to reach distant targets7-9, we postulated that the peripheral nervous system may directly interact with diseased arteries. Unexpectedly, widespread neuroimmune cardiovascular interfaces (NICIs) arose in mouse and human atherosclerosis-diseased adventitia segments showed expanded axon networks, including growth cones at axon endings near immune cells and media smooth muscle cells. Mouse NICIs established a structural artery-brain circuit (ABC): abdominal adventitia nociceptive afferents10-14 entered the central nervous system through spinal cord T6-T13 dorsal root ganglia and were traced to higher brain regions, including the parabrachial and central amygdala neurons; and sympathetic efferent neurons projected from medullary and hypothalamic neurons to the adventitia through spinal intermediolateral neurons and both coeliac and sympathetic chain ganglia. Moreover, ABC peripheral nervous system components were activated: splenic sympathetic and coeliac vagus nerve activities increased in parallel to disease progression, whereas coeliac ganglionectomy led to the disintegration of adventitial NICIs, reduced disease progression and enhanced plaque stability. Thus, the peripheral nervous system uses NICIs to assemble a structural ABC, and therapeutic intervention in the ABC attenuates atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Aterosclerose/prevenção & controle , Progressão da Doença , Gânglios Espinais , Gânglios Simpáticos , Camundongos , Neurônios/fisiologia , Placa Aterosclerótica/prevenção & controle
2.
Circ Res ; 132(11): 1546-1565, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37228235

RESUMO

The cardiovascular system is hardwired to the brain via multilayered afferent and efferent polysynaptic axonal connections. Two major anatomically and functionally distinct though closely interacting subcircuits within the cardiovascular system have recently been defined: The artery-brain circuit and the heart-brain circuit. However, how the nervous system impacts cardiovascular disease progression remains poorly understood. Here, we review recent findings on the anatomy, structures, and inner workings of the lesser-known artery-brain circuit and the better-established heart-brain circuit. We explore the evidence that signals from arteries or the heart form a systemic and finely tuned cardiovascular brain circuit: afferent inputs originating in the arterial tree or the heart are conveyed to distinct sensory neurons in the brain. There, primary integration centers act as hubs that receive and integrate artery-brain circuit-derived and heart-brain circuit-derived signals and process them together with axonal connections and humoral cues from distant brain regions. To conclude the cardiovascular brain circuit, integration centers transmit the constantly modified signals to efferent neurons which transfer them back to the cardiovascular system. Importantly, primary integration centers are wired to and receive information from secondary brain centers that control a wide variety of brain traits encoded in engrams including immune memory, stress-regulating hormone release, pain, reward, emotions, and even motivated types of behavior. Finally, we explore the important possibility that brain effector neurons in the cardiovascular brain circuit network connect efferent signals to other peripheral organs including the immune system, the gut, the liver, and adipose tissue. The enormous recent progress vis-à-vis the cardiovascular brain circuit allows us to propose a novel neurobiology-centered cardiovascular disease hypothesis that we term the neuroimmune cardiovascular circuit hypothesis.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Humanos , Coração , Neurônios/fisiologia , Encéfalo
3.
Immunity ; 42(6): 1100-15, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26084025

RESUMO

Tertiary lymphoid organs (TLOs) emerge during nonresolving peripheral inflammation, but their impact on disease progression remains unknown. We have found in aged Apoe(-/-) mice that artery TLOs (ATLOs) controlled highly territorialized aorta T cell responses. ATLOs promoted T cell recruitment, primed CD4(+) T cells, generated CD4(+), CD8(+), T regulatory (Treg) effector and central memory cells, converted naive CD4(+) T cells into induced Treg cells, and presented antigen by an unusual set of dendritic cells and B cells. Meanwhile, vascular smooth muscle cell lymphotoxin ß receptors (VSMC-LTßRs) protected against atherosclerosis by maintaining structure, cellularity, and size of ATLOs though VSMC-LTßRs did not affect secondary lymphoid organs: Atherosclerosis was markedly exacerbated in Apoe(-/-)Ltbr(-/-) and to a similar extent in aged Apoe(-/-)Ltbr(fl/fl)Tagln-cre mice. These data support the conclusion that the immune system employs ATLOs to organize aorta T cell homeostasis during aging and that VSMC-LTßRs participate in atherosclerosis protection via ATLOs.


Assuntos
Envelhecimento/imunologia , Aterosclerose/imunologia , Receptor beta de Linfotoxina/metabolismo , Miócitos de Músculo Liso/fisiologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Túnica Adventícia/imunologia , Envelhecimento/genética , Animais , Aorta/patologia , Apolipoproteínas E/genética , Aterosclerose/genética , Diferenciação Celular/genética , Movimento Celular/genética , Células Cultivadas , Coristoma/imunologia , Memória Imunológica , Ativação Linfocitária/genética , Tecido Linfoide/imunologia , Receptor beta de Linfotoxina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas Musculares/genética
4.
Eur Heart J ; 44(29): 2672-2681, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37210082

RESUMO

This review based on the ESC William Harvey Lecture in Basic Science 2022 highlights recent experimental and translational progress on the therapeutic targeting of the inflammatory components in atherosclerosis, introducing novel strategies to limit side effects and to increase efficacy. Since the validation of the inflammatory paradigm in CANTOS and COLCOT, efforts to control the residual risk conferred by inflammation have centred on the NLRP3 inflammasome-driven IL-1ß-IL6 axis. Interference with the co-stimulatory dyad CD40L-CD40 and selective targeting of tumour necrosis factor-receptor associated factors (TRAFs), namely the TRAF6-CD40 interaction in macrophages by small molecule inhibitors, harbour intriguing options to reduce established atherosclerosis and plaque instability without immune side effects. The chemokine system crucial for shaping immune cell recruitment and homoeostasis can be fine-tuned and modulated by its heterodimer interactome. Structure-function analysis enabled the design of cyclic, helical, or linked peptides specifically targeting or mimicking these interactions to limit atherosclerosis or thrombosis by blunting myeloid recruitment, boosting regulatory T cells, inhibiting platelet activity, or specifically blocking the atypical chemokine MIF without notable side effects. Finally, adventitial neuroimmune cardiovascular interfaces in advanced atherosclerosis show robust restructuring of innervation from perivascular ganglia and employ sensory neurons of dorsal root ganglia to enter the central nervous system and to establish an atherosclerosis-brain circuit sensor, while sympathetic and vagal efferents project to the celiac ganglion to create an atherosclerosis-brain circuit effector. Disrupting this circuitry by surgical or chemical sympathectomy limited disease progression and enhanced plaque stability, opening exciting perspectives for selective and tailored intervention beyond anti-inflammatory strategies.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Aterosclerose/tratamento farmacológico , Inflamação/tratamento farmacológico , Macrófagos/patologia , Quimiocinas/farmacologia , Quimiocinas/uso terapêutico
5.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255976

RESUMO

Thoracic aortic aneurysm (TAA) has a prevalence of 0.16-0.34% and an incidence of 7.6 per 100,000 person-years, accounting for 1-2% of all deaths in Western countries. Currently, no effective pharmacological therapies have been identified to slow TAA development and prevent TAA rupture. Large TAAs are treated with open surgical repair and less invasive thoracic endovascular aortic repair, both of which have high perioperative mortality risk. Therefore, there is an urgent medical need to identify the cellular and molecular mechanisms underlying TAA development and rupture to develop new therapies. In this review, we summarize animal TAA models including recent developments in porcine and zebrafish models: porcine models can assess new therapeutic devices or intervention strategies in a large mammal and zebrafish models can employ large-scale small-molecule suppressor screening in microwells. The second part of the review covers current views of TAA pathogenesis, derived from recent studies using these animal models, with a focus on the roles of the transforming growth factor-beta (TGFß) pathway and the vascular smooth muscle cell (VSMC)-elastin-contractile unit. The last part discusses TAA treatment options as they emerge from recent preclinical studies.


Assuntos
Aneurisma da Aorta Torácica , Ruptura Aórtica , Humanos , Animais , Suínos , Peixe-Zebra , Aneurisma da Aorta Torácica/etiologia , Aneurisma da Aorta Torácica/terapia , Modelos Animais , Contração Muscular , Mamíferos
6.
Arterioscler Thromb Vasc Biol ; 36(6): 1174-85, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27102965

RESUMO

OBJECTIVE: Explore aorta B-cell immunity in aged apolipoprotein E-deficient (ApoE(-/-)) mice. APPROACH AND RESULTS: Transcript maps, fluorescence-activated cell sorting, immunofluorescence analyses, cell transfers, and Ig-ELISPOT (enzyme-linked immunospot) assays showed multilayered atherosclerosis B-cell responses in artery tertiary lymphoid organs (ATLOs). Aging-associated aorta B-cell-related transcriptomes were identified, and transcript atlases revealed highly territorialized B-cell responses in ATLOs versus atherosclerotic lesions: ATLOs showed upregulation of bona fide B-cell genes, including Cd19, Ms4a1 (Cd20), Cd79a/b, and Ighm although intima plaques preferentially expressed molecules involved in non-B effector responses toward B-cell-derived mediators, that is, Fcgr3 (Cd16), Fcer1g (Cd23), and the C1q family. ATLOs promoted B-cell recruitment. ATLO B-2 B cells included naive, transitional, follicular, germinal center, switched IgG1(+), IgA(+), and IgE(+) memory cells, plasmablasts, and long-lived plasma cells. ATLOs recruited large numbers of B-1 cells whose subtypes were skewed toward interleukin-10(+) B-1b cells versus interleukin-10(-) B-1a cells. ATLO B-1 cells and plasma cells constitutively produced IgM and IgG and a fraction of plasma cells expressed interleukin-10. Moreover, ApoE(-/-) mice showed increased germinal center B cells in renal lymph nodes, IgM-producing plasma cells in the bone marrow, and higher IgM and anti-MDA-LDL (malondialdehyde-modified low-density lipoprotein) IgG serum titers. CONCLUSIONS: ATLOs orchestrate dichotomic, territorialized, and multilayered B-cell responses in the diseased aorta; germinal center reactions indicate generation of autoimmune B cells within the diseased arterial wall during aging.


Assuntos
Envelhecimento/imunologia , Aorta/imunologia , Doenças da Aorta/imunologia , Apolipoproteínas E/deficiência , Aterosclerose/imunologia , Linfócitos B/imunologia , Estruturas Linfoides Terciárias/imunologia , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Autoanticorpos/sangue , Autoimunidade , Linfócitos B/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Predisposição Genética para Doença , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Imunoglobulinas/sangue , Memória Imunológica , Lipoproteínas LDL/imunologia , Linfonodos/imunologia , Linfonodos/metabolismo , Masculino , Malondialdeído/análogos & derivados , Malondialdeído/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Plasmócitos/imunologia , Plasmócitos/metabolismo , Transdução de Sinais , Estruturas Linfoides Terciárias/metabolismo , Estruturas Linfoides Terciárias/patologia , Transcriptoma
7.
Circ Res ; 114(11): 1772-87, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24855201

RESUMO

Tertiary lymphoid organs emerge in tissues in response to nonresolving inflammation. Recent research characterized artery tertiary lymphoid organs in the aorta adventitia of aged apolipoprotein E-deficient mice. The atherosclerosis-associated lymphocyte aggregates are organized into distinct compartments, including separate T-cell areas harboring conventional, monocyte-derived, lymphoid, and plasmacytoid dendritic cells, as well as activated T-cell effectors and memory cells; B-cell follicles containing follicular dendritic cells in activated germinal centers; and peripheral niches of plasma cells. Artery tertiary lymphoid organs show marked neoangiogenesis, aberrant lymphangiogenesis, and extensive induction of high endothelial venules. Moreover, newly formed lymph node-like conduits connect the external lamina with high endothelial venules in T-cell areas and also extend into germinal centers. Mouse artery tertiary lymphoid organs recruit large numbers of naïve T cells and harbor lymphocyte subsets with opposing activities, including CD4(+) and CD8(+) effector and memory T cells, natural and induced CD4(+) regulatory T cells, and memory B cells at different stages of differentiation. These data suggest that artery tertiary lymphoid organs participate in primary immune responses and organize T- and B-cell autoimmune responses in advanced atherosclerosis. In this review, we discuss the novel concept that pro- and antiatherogenic immune responses toward unknown arterial wall-derived autoantigens may be organized by artery tertiary lymphoid organs and that disruption of the balance between pro- and antiatherogenic immune cell subsets may trigger clinically overt atherosclerosis.


Assuntos
Imunidade Adaptativa/fisiologia , Túnica Adventícia/fisiopatologia , Artérias/fisiopatologia , Aterosclerose/imunologia , Aterosclerose/fisiopatologia , Imunidade Inata/fisiologia , Tecido Linfoide/fisiopatologia , Animais , Apolipoproteínas E/deficiência , Aterosclerose/patologia , Autoimunidade/imunologia , Autoimunidade/fisiologia , Linfócitos B/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Neovascularização Patológica/fisiopatologia , Índice de Gravidade de Doença , Linfócitos T/patologia
8.
Front Cell Dev Biol ; 11: 1117368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793445

RESUMO

Two pairs of biological systems acting over long distances have recently been defined as major participants in the regulation of physiological and pathological tissue reactions: i) the nervous and vascular systems form various blood-brain barriers and control axon growth and angiogenesis; and ii) the nervous and immune systems emerge as key players to direct immune responses and maintain blood vessel integrity. The two pairs have been explored by investigators in relatively independent research areas giving rise to the concepts of the rapidly expanding topics of the neurovascular link and neuroimmunology, respectively. Our recent studies on atherosclerosis led us to consider a more inclusive approach by conceptualizing and combining principles of the neurovascular link and neuroimmunology: we propose that the nervous system, the immune system and the cardiovascular system undergo complex crosstalks in tripartite rather than bipartite interactions to form neuroimmune cardiovascular interfaces (NICIs).

9.
Cells ; 12(20)2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37887328

RESUMO

Three systemic biological systems, i.e., the nervous, the immune, and the cardiovascular systems, form a mutually responsive and forward-acting tissue network to regulate acute and chronic cardiovascular function in health and disease. Two sub-circuits within the cardiovascular system have been described, the artery brain circuit (ABC) and the heart brain circuit (HBC), forming a large cardiovascular brain circuit (CBC). Likewise, the nervous system consists of the peripheral nervous system and the central nervous system with their functional distinct sensory and effector arms. Moreover, the immune system with its constituents, i.e., the innate and the adaptive immune systems, interact with the CBC and the nervous system at multiple levels. As understanding the structure and inner workings of the CBC gains momentum, it becomes evident that further research into the CBC may lead to unprecedented classes of therapies to treat cardiovascular diseases as multiple new biologically active molecules are being discovered that likely affect cardiovascular disease progression. Here, we weigh the merits of integrating these recent observations in cardiovascular neurobiology into previous views of cardiovascular disease pathogeneses. These considerations lead us to propose the Neuroimmune Cardiovascular Circuit Hypothesis.


Assuntos
Doenças Cardiovasculares , Depressores do Sistema Nervoso Central , Humanos , Neuroimunomodulação , Sistema Nervoso Central , Coração , Depressores do Sistema Nervoso Central/farmacologia , Artérias
10.
Nat Cardiovasc Res ; 2(3): 290-306, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37621765

RESUMO

Atherosclerotic plaques form in the inner layer of arteries triggering heart attacks and strokes. Although T cells have been detected in atherosclerosis, tolerance dysfunction as a disease driver remains unexplored. Here we examine tolerance checkpoints in atherosclerotic plaques, artery tertiary lymphoid organs and lymph nodes in mice burdened by advanced atherosclerosis, via single-cell RNA sequencing paired with T cell antigen receptor sequencing. Complex patterns of deteriorating peripheral T cell tolerance were observed being most pronounced in plaques followed by artery tertiary lymphoid organs, lymph nodes and blood. Affected checkpoints included clonal expansion of CD4+, CD8+ and regulatory T cells; aberrant tolerance-regulating transcripts of clonally expanded T cells; T cell exhaustion; Treg-TH17 T cell conversion; and dysfunctional antigen presentation. Moreover, single-cell RNA-sequencing profiles of human plaques revealed that the CD8+ T cell tolerance dysfunction observed in mouse plaques was shared in human coronary and carotid artery plaques. Thus, our data support the concept of atherosclerosis as a bona fide T cell autoimmune disease targeting the arterial wall.

11.
Science ; 381(6660): 897-906, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37616346

RESUMO

Aging is a major risk factor for impaired cardiovascular health. Because the aging myocardium is characterized by microcirculatory dysfunction, and because nerves align with vessels, we assessed the impact of aging on the cardiac neurovascular interface. We report that aging reduces nerve density in the ventricle and dysregulates vascular-derived neuroregulatory genes. Aging down-regulates microRNA 145 (miR-145) and derepresses the neurorepulsive factor semaphorin-3A. miR-145 deletion, which increased Sema3a expression or endothelial Sema3a overexpression, reduced axon density, mimicking the aged-heart phenotype. Removal of senescent cells, which accumulated with chronological age in parallel to the decline in nerve density, rescued age-induced denervation, reversed Sema3a expression, preserved heart rate patterns, and reduced electrical instability. These data suggest that senescence-mediated regulation of nerve density contributes to age-associated cardiac dysfunction.


Assuntos
Envelhecimento , Senescência Celular , Coração , MicroRNAs , Densidade Microvascular , Miocárdio , Semaforina-3A , Coração/inervação , Microcirculação , MicroRNAs/genética , MicroRNAs/metabolismo , Semaforina-3A/genética , Animais , Camundongos , Envelhecimento/genética , Envelhecimento/patologia , Masculino , Camundongos Endogâmicos C57BL , Senescência Celular/genética , Miocárdio/patologia , Axônios
12.
Blood ; 115(3): e10-9, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19965649

RESUMO

Blood of both humans and mice contains 2 main monocyte subsets. Here, we investigated the extent of their similarity using a microarray approach. Approximately 270 genes in humans and 550 genes in mice were differentially expressed between subsets by 2-fold or more. More than 130 of these gene expression differences were conserved between mouse and human monocyte subsets. We confirmed numerous of these differences at the cell surface protein level. Despite overall conservation, some molecules were conversely expressed between the 2 species' subsets, including CD36, CD9, and TREM-1. Other differences included a prominent peroxisome proliferator-activated receptor gamma (PPARgamma) signature in mouse monocytes, which is absent in humans, and strikingly opposed patterns of receptors involved in uptake of apoptotic cells and other phagocytic cargo between human and mouse monocyte subsets. Thus, whereas human and mouse monocyte subsets are far more broadly conserved than currently recognized, important differences between the species deserve consideration when models of human disease are studied in mice.


Assuntos
Perfilação da Expressão Gênica , Monócitos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Arterioscler Thromb Vasc Biol ; 30(3): 395-402, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20139367

RESUMO

OBJECTIVE: Mouse aorta smooth muscle cells (SMC) express tumor necrosis factor receptor superfamily member 1A (TNFR-1) and lymphotoxin beta-receptor (LTbetaR). Circumstantial evidence has linked the SMC LTbetaR to tertiary lymphoid organogenesis in hyperlipidemic mice. Here, we explored TNFR-1 and LTbetaR signaling in cultured SMC. METHODS AND RESULTS: TNFR-1 signaling activated the classical RelA NF-kappaB pathway, whereas LTbetaR signaling activated the classical RelA and alternative RelB NF-kappaB pathways, and both signaling pathways synergized to enhance p100 inhibitor processing to the p52 subunit of NF-kappaB. Microarrays showed that simultaneous TNFR-1/LTbetaR activation resulted in elevated mRNA encoding leukocyte homeostatic chemokines CCL2, CCL5, CXCL1, and CX3CL1. Importantly, SMC acquired features of lymphoid tissue organizers, which control tertiary lymphoid organogenesis in autoimmune diseases through hyperinduction of CCL7, CCL9, CXCL13, CCL19, CXCL16, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1. TNFR-1/LTbetaR cross-talk resulted in augmented secretion of lymphorganogenic chemokine proteins. Supernatants of TNFR-1/LTbetaR-activated SMC markedly supported migration of splenic T cells, B cells, and macrophages/dendritic cells. Experiments with ltbr(-/-) SMC indicated that LTbetaR-RelB activation was obligatory to generate the lymphoid tissue organizer phenotype. CONCLUSIONS: SMC may participate in the formation of tertiary lymphoid tissue in atherosclerosis by upregulation of lymphorganogenic chemokines involved in T-lymphocyte, B-lymphocyte, and macrophage/dendritic cell attraction.


Assuntos
Diferenciação Celular/fisiologia , Tecido Linfoide/citologia , Receptor beta de Linfotoxina/fisiologia , Miócitos de Músculo Liso/citologia , NF-kappa B/fisiologia , Receptores Tipo I de Fatores de Necrose Tumoral/fisiologia , Transdução de Sinais/fisiologia , Animais , Anticorpos Monoclonais/farmacologia , Aorta/citologia , Aorta/efeitos dos fármacos , Aorta/fisiologia , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Movimento Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Tecido Linfoide/fisiologia , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Fator de Necrose Tumoral alfa/farmacologia
14.
Nat Med ; 10(9): 966-73, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15322539

RESUMO

Activation of the 5-lipoxygenase (5-LO) pathway leads to the biosynthesis of proinflammatory leukotriene lipid mediators. Genetic studies have associated 5-LO and its accessory protein, 5-LO-activating protein, with cardiovascular disease, myocardial infarction and stroke. Here we show that 5-LO-positive macrophages localize to the adventitia of diseased mouse and human arteries in areas of neoangiogenesis and that these cells constitute a main component of aortic aneurysms induced by an atherogenic diet containing cholate in mice deficient in apolipoprotein E. 5-LO deficiency markedly attenuates the formation of these aneurysms and is associated with reduced matrix metalloproteinase-2 activity and diminished plasma macrophage inflammatory protein-1alpha (MIP-1alpha; also called CCL3), but only minimally affects the formation of lipid-rich lesions. The leukotriene LTD(4) strongly stimulates expression of MIP-1alpha in macrophages and MIP-2 (also called CXCL2) in endothelial cells. These data link the 5-LO pathway to hyperlipidemia-dependent inflammation of the arterial wall and to pathogenesis of aortic aneurysms through a potential chemokine intermediary route.


Assuntos
Aneurisma da Aorta Abdominal/etiologia , Araquidonato 5-Lipoxigenase/metabolismo , Regulação da Expressão Gênica , Hiperlipidemias/complicações , Leucotrienos/biossíntese , Macrófagos/metabolismo , Proteínas Ativadoras de 5-Lipoxigenase , Análise de Variância , Animais , Western Blotting , Proteínas de Transporte/metabolismo , Quimiocina CCL2/sangue , Quimiocina CCL3 , Quimiocina CCL4 , Quimiocina CXCL1 , Quimiocinas CXC/metabolismo , Colatos , Tecido Conjuntivo/metabolismo , Citocinas/sangue , Primers do DNA , Dieta Aterogênica , Técnicas Histológicas , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Leucotrieno D4/metabolismo , Proteínas Inflamatórias de Macrófagos/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/metabolismo , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Theranostics ; 11(4): 1864-1876, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33408786

RESUMO

Rationale: The high expression of Galectin-3 (Gal3) in macrophages of atherosclerotic plaques suggests its participation in atherosclerosis pathogenesis, and raises the possibility to use it as a target to image disease severity in vivo. Here, we explored the feasibility of tracking atherosclerosis by targeting Gal3 expression in plaques of apolipoprotein E knockout (ApoE-KO) mice via PET imaging. Methods: Targeting of Gal3 in M0-, M1- and M2 (M2a/M2c)-polarized macrophages was assessed in vitro using a Gal3-F(ab')2 mAb labeled with AlexaFluor®488 and 89Zr- desferrioxamine-thioureyl-phenyl-isothiocyanate (DFO). To visualize plaques in vivo, ApoE-KO mice were injected i.v. with 89Zr-DFO-Gal3-F(ab')2 mAb and imaged via PET/CT 48 h post injection. Whole length aortas harvested from euthanized mice were processed for Sudan-IV staining, autoradiography, and immunostaining for Gal3, CD68 and α-SMA expression. To confirm accumulation of the tracer in plaques, ApoE-KO mice were injected i.v. with Cy5.5-Gal3-F(ab')2 mAb, euthanized 48 h post injection, followed by cryosections of the body and acquisition of fluorescent images. To explore the clinical potential of this imaging modality, immunostaining for Gal3, CD68 and α-SMA expression were carried out in human plaques. Single cell RNA sequencing (scRNA-Seq) analyses were performed to measure LGALS3 (i.e. a synonym for Gal3) gene expression in each macrophage of several subtypes present in murine or human plaques. Results: Preferential binding to M2 macrophages was observed with both AlexaFluor®488-Gal3-F(ab')2 and 89Zr-DFO-Gal3-F(ab')2 mAbs. Focal and specific 89Zr-DFO-Gal3-F(ab')2 mAb uptake was detected in plaques of ApoE-KO mice by PET/CT. Autoradiography and immunohistochemical analyses of aortas confirmed the expression of Gal3 within plaques mainly in macrophages. Moreover, a specific fluorescent signal was visualized within the lesions of vascular structures burdened by plaques in mice. Gal3 expression in human plaques showed similar Gal3 expression patterns when compared to their murine counterparts. Conclusions: Our data reveal that 89Zr-DFO-Gal3-F(ab')2 mAb PET/CT is a potentially novel tool to image atherosclerotic plaques at different stages of development, allowing knowledge-based tailored individual intervention in clinically significant disease.


Assuntos
Anticorpos Monoclonais/imunologia , Desferroxamina/química , Galectina 3/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica/patologia , Radioisótopos/metabolismo , Zircônio/metabolismo , Animais , Feminino , Galectina 3/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/metabolismo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/metabolismo
16.
J Clin Invest ; 117(5): 1381-90, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17446934

RESUMO

Glucocorticoids (GCs) are widely used in the treatment of allergic skin conditions despite having numerous side effects. Here we use Cre/loxP-engineered tissue- and cell-specific and function-selective GC receptor (GR) mutant mice to identify responsive cell types and molecular mechanisms underlying the antiinflammatory activity of GCs in contact hypersensitivity (CHS). CHS was repressed by GCs only at the challenge phase, i.e., during reexposure to the hapten. Inactivation of the GR gene in keratinocytes or T cells of mutant mice did not attenuate the effects of GCs, but its ablation in macrophages and neutrophils abolished downregulation of the inflammatory response. Moreover, mice expressing a DNA binding-defective GR were also resistant to GC treatment. The persistent infiltration of macrophages and neutrophils in these mice is explained by an impaired repression of inflammatory cytokines and chemokines such as IL-1beta, monocyte chemoattractant protein-1, macrophage inflammatory protein-2, and IFN-gamma-inducible protein 10. In contrast TNF-alpha repression remained intact. Consequently, injection of recombinant proteins of these cytokines and chemokines partially reversed suppression of CHS by GCs. These studies provide evidence that in contact allergy, therapeutic action of corticosteroids is in macrophages and neutrophils and that dimerization GR is required.


Assuntos
Dermatite Alérgica de Contato/tratamento farmacológico , Dermatite Alérgica de Contato/imunologia , Dexametasona/administração & dosagem , Imunossupressores/uso terapêutico , Macrófagos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Animais , Anti-Inflamatórios/uso terapêutico , Células Cultivadas , Dermatite Alérgica de Contato/patologia , Dexametasona/uso terapêutico , Sistemas de Liberação de Medicamentos , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neutrófilos/imunologia , Neutrófilos/patologia , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/genética
17.
BMC Immunol ; 10: 2, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-19134178

RESUMO

BACKGROUND: Human B lymphocytes can produce leukotriene B4 but the biological function of the 5-lipoxygenase (5-LO) pathway in B cells is unclear. In order to better understand and define the role of 5-LO in B cells, we investigated the expression of 5-LO mRNA and protein in subsets of B cells from human tonsils and different types of B cell lymphoma. RESULTS: Based on RT-PCR and western blot/immunohistochemical staining, with a polyclonal antibody raised against 5-LO, high expression of 5-LO was found in mantle zone B cells from tonsils. By contrast, only a weak expression of 5-LO was detected in germinal centre cells and no expression in plasma cells from tonsils. This pattern of 5-LO expression was preserved in malignant lymphoma with high expression in mantle B cell lymphoma (MCL) and weak or no expression in follicular lymphoma. Primary leukemized MCL, so called B-prolymphocytic leukaemia cells, and MCL cell lines also expressed 5-LO and readily produced LTB4 after activation. CONCLUSION: The present report demonstrates the expression of 5-LO mainly in normal and malignant mantle zone B cells while the expression is low or absent in germinal centre B cells and plasma cells, indicating a role of the 5-LO pathway in B cells before the cells finally differentiate to plasma cells.


Assuntos
Araquidonato 5-Lipoxigenase/biossíntese , Subpopulações de Linfócitos B/enzimologia , Linfócitos B/enzimologia , Leucemia Prolinfocítica Tipo Células B/enzimologia , Linfoma Folicular/enzimologia , Linfoma de Célula do Manto/enzimologia , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/imunologia , Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Western Blotting , Diferenciação Celular , Linhagem Celular , Transformação Celular Neoplásica , Regulação Enzimológica da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Humanos , Imunidade Celular , Memória Imunológica , Imunofenotipagem , Leucemia Prolinfocítica Tipo Células B/imunologia , Leucotrieno B4/metabolismo , Ativação Linfocitária , Linfoma Folicular/imunologia , Linfoma de Célula do Manto/imunologia , Microscopia de Fluorescência , Tonsila Palatina/citologia , Tonsila Palatina/imunologia , Reação em Cadeia da Polimerase , Transdução de Sinais
18.
Front Immunol ; 10: 1101, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164888

RESUMO

Vascular smooth muscle cells (VSMCs) constitute the major cells in the media layer of arteries, and are critical to maintain the integrity of the arterial wall. They participate in arterial wall remodeling, and play important roles in atherosclerosis throughout all stages of the disease. Studies demonstrate that VSMCs can adopt numerous phenotypes depending on inputs from endothelial cells (ECs) of the intima, resident cells of the adventitia, circulating immune cells, hormones, and plasma lipoproteins. This plasticity allows them to perform multiple tasks in physiology and disease. In this minireview, we focus on a previously underappreciated activity of VSMCs, i.e., their impact on atherosclerosis immunity via formation of artery tertiary lymphoid organs (ATLOs).


Assuntos
Aterosclerose/etiologia , Aterosclerose/metabolismo , Suscetibilidade a Doenças , Imunidade , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Túnica Adventícia/imunologia , Envelhecimento/imunologia , Envelhecimento/metabolismo , Animais , Aterosclerose/patologia , Biomarcadores , Plasticidade Celular/imunologia , Citocinas/metabolismo , Suscetibilidade a Doenças/imunologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Humanos , Hiperlipidemias/sangue , Hiperlipidemias/complicações , Hiperlipidemias/imunologia , Hiperlipidemias/metabolismo , Mediadores da Inflamação/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Camundongos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/imunologia , Miócitos de Músculo Liso/imunologia , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia
19.
Nat Med ; 25(3): 496-506, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30692699

RESUMO

Apolipoprotein-E (ApoE) has been implicated in Alzheimer's disease, atherosclerosis, and other unresolvable inflammatory conditions but a common mechanism of action remains elusive. We found in ApoE-deficient mice that oxidized lipids activated the classical complement cascade (CCC), resulting in leukocyte infiltration of the choroid plexus (ChP). All human ApoE isoforms attenuated CCC activity via high-affinity binding to the activated CCC-initiating C1q protein (KD~140-580 pM) in vitro, and C1q-ApoE complexes emerged as markers for ongoing complement activity of diseased ChPs, Aß plaques, and atherosclerosis in vivo. C1q-ApoE complexes in human ChPs, Aß plaques, and arteries correlated with cognitive decline and atherosclerosis, respectively. Treatment with small interfering RNA (siRNA) against C5, which is formed by all complement pathways, attenuated murine ChP inflammation, Aß-associated microglia accumulation, and atherosclerosis. Thus, ApoE is a direct checkpoint inhibitor of unresolvable inflammation, and reducing C5 attenuates disease burden.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Apolipoproteínas E/imunologia , Doenças das Artérias Carótidas/imunologia , Plexo Corióideo/imunologia , Disfunção Cognitiva/imunologia , Complemento C1q/imunologia , Via Clássica do Complemento/imunologia , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/imunologia , Animais , Aorta/imunologia , Aorta/patologia , Aterosclerose/imunologia , Aterosclerose/patologia , Encéfalo/imunologia , Encéfalo/patologia , Artérias Carótidas/imunologia , Artérias Carótidas/patologia , Doenças das Artérias Carótidas/patologia , Plexo Corióideo/patologia , Disfunção Cognitiva/patologia , Complemento C5 , Feminino , Humanos , Leucócitos , Masculino , Camundongos Knockout para ApoE , Microscopia de Fluorescência , Pessoa de Meia-Idade , Placa Amiloide/imunologia , Placa Amiloide/patologia , Isoformas de Proteínas/imunologia , RNA Interferente Pequeno
20.
Nat Med ; 25(3): 529, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30718908

RESUMO

In the version of this article originally published, a sentence was erroneously included in the author contributions, and information regarding second shared authorship was missing from the author contributions. The following should not have been included in the author contributions: "C.W. and A.J.R.H. supervised the work presented in Figs. 1, 2, 5, 6; P.Z. and C.S. supervised the work presented in Figs. 3, 4." Additionally, this sentence should have appeared at the beginning of the author contributions: "These authors contributed equally: C.W., P.F.Z., C.S., and A.J.R.H." The errors have been corrected in the print, PDF and HTML versions of the article.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA