RESUMO
The Diversity Outbred (DO) mice and their inbred founders are widely used models of human disease. However, although the genetic diversity of these mice has been well documented, their epigenetic diversity has not. Epigenetic modifications, such as histone modifications and DNA methylation, are important regulators of gene expression and, as such, are a critical mechanistic link between genotype and phenotype. Therefore, creating a map of epigenetic modifications in the DO mice and their founders is an important step toward understanding mechanisms of gene regulation and the link to disease in this widely used resource. To this end, we performed a strain survey of epigenetic modifications in hepatocytes of the DO founders. We surveyed four histone modifications (H3K4me1, H3K4me3, H3K27me3, and H3K27ac), as well as DNA methylation. We used ChromHMM to identify 14 chromatin states, each of which represents a distinct combination of the four histone modifications. We found that the epigenetic landscape is highly variable across the DO founders and is associated with variation in gene expression across strains. We found that epigenetic state imputed into a population of DO mice recapitulated the association with gene expression seen in the founders, suggesting that both histone modifications and DNA methylation are highly heritable mechanisms of gene expression regulation. We illustrate how DO gene expression can be aligned with inbred epigenetic states to identify putative cis-regulatory regions. Finally, we provide a data resource that documents strain-specific variation in the chromatin state and DNA methylation in hepatocytes across nine widely used strains of laboratory mice.
Assuntos
Metilação de DNA , Histonas , Humanos , Camundongos , Animais , Histonas/genética , Histonas/metabolismo , Regiões Promotoras Genéticas , Cromatina/genética , Epigênese Genética , Código das Histonas , Camundongos Endogâmicos , Expressão GênicaRESUMO
INTRODUCTION: Fundamental questions remain about the key mechanisms that initiate Alzheimer's disease (AD) and the factors that promote its progression. Here we report the successful generation of the first genetically engineered marmosets that carry knock-in (KI) point mutations in the presenilin 1 (PSEN1) gene that can be studied from birth throughout lifespan. METHODS: CRISPR/Cas9 was used to generate marmosets with C410Y or A426P point mutations in PSEN1. Founders and their germline offspring are comprehensively studied longitudinally using non-invasive measures including behavior, biomarkers, neuroimaging, and multiomics signatures. RESULTS: Prior to adulthood, increases in plasma amyloid beta were observed in PSEN1 mutation carriers relative to non-carriers. Analysis of brain revealed alterations in several enzyme-substrate interactions within the gamma secretase complex prior to adulthood. DISCUSSION: Marmosets carrying KI point mutations in PSEN1 provide the opportunity to study the earliest primate-specific mechanisms that contribute to the molecular and cellular root causes of AD onset and progression. HIGHLIGHTS: We report the successful generation of genetically engineered marmosets harboring knock-in point mutations in the PSEN1 gene. PSEN1 marmosets and their germline offspring recapitulate the early emergence of AD-related biomarkers. Studies as early in life as possible in PSEN1 marmosets will enable the identification of primate-specific mechanisms that drive disease progression.
Assuntos
Doença de Alzheimer , Callithrix , Presenilina-1 , Animais , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Animais Geneticamente Modificados , Encéfalo/patologia , Encéfalo/metabolismo , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Mutação/genética , Mutação Puntual/genética , Presenilina-1/genéticaRESUMO
Late-Onset Alzheimer's disease (LOAD) is a common, complex genetic disorder well-known for its heterogeneous pathology. The genetic heterogeneity underlying common, complex diseases poses a major challenge for targeted therapies and the identification of novel disease-associated variants. Case-control approaches are often limited to examining a specific outcome in a group of heterogenous patients with different clinical characteristics. Here, we developed a novel approach to define relevant transcriptomic endophenotypes and stratify decedents based on molecular profiles in three independent human LOAD cohorts. By integrating post-mortem brain gene co-expression data from 2114 human samples with LOAD, we developed a novel quantitative, composite phenotype that can better account for the heterogeneity in genetic architecture underlying the disease. We used iterative weighted gene co-expression network analysis (WGCNA) to reduce data dimensionality and to isolate gene sets that are highly co-expressed within disease subtypes and represent specific molecular pathways. We then performed single variant association testing using whole genome-sequencing data for the novel composite phenotype in order to identify genetic loci that contribute to disease heterogeneity. Distinct LOAD subtypes were identified for all three study cohorts (two in ROSMAP, three in Mayo Clinic, and two in Mount Sinai Brain Bank). Single variant association analysis identified a genome-wide significant variant in TMEM106B (p-value < 5×10-8, rs1990620G) in the ROSMAP cohort that confers protection from the inflammatory LOAD subtype. Taken together, our novel approach can be used to stratify LOAD into distinct molecular subtypes based on affected disease pathways.
Assuntos
Doença de Alzheimer/genética , Genes Modificadores , Transcriptoma , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Feminino , Perfilação da Expressão Gênica/métodos , Heterogeneidade Genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Differences among clades in their diversification patterns result from a combination of extrinsic and intrinsic factors. In this study, I examined the role of intrinsic factors in the morphological diversification of ruminants, in general, and in the differences between bovids and cervids, in particular. Using skull morphology, which embodies many of the adaptations that distinguish bovids and cervids, I examined 132 of the 200 extant ruminant species. As a proxy for intrinsic constraints, I quantified different aspects of the phenotypic covariation structure within species and compared them with the among-species divergence patterns, using phylogenetic comparative methods. My results show that for most species, divergence is well aligned with their phenotypic covariance matrix and that those that are better aligned have diverged further away from their ancestor. Bovids have dispersed into a wider range of directions in morphospace than cervids, and their overall disparity is higher. This difference is best explained by the lower eccentricity of bovids' within-species covariance matrices. These results are consistent with the role of intrinsic constraints in determining amount, range, and direction of dispersion and demonstrate that intrinsic constraints can influence macroevolutionary patterns even as the covariance structure evolves.
Assuntos
Evolução Biológica , Ruminantes/anatomia & histologia , Crânio/anatomia & histologia , Animais , Feminino , Masculino , Fenótipo , Filogenia , Ruminantes/classificaçãoRESUMO
Clarifying how microevolutionary processes scale to macroevolutionary patterns is a fundamental goal in evolutionary biology, but these analyses, requiring comparative datasets of population-level variation, are limited. By analyzing a previously published dataset of 2859 ruminant crania, we find that variation within and between ruminant species is biased by a highly conserved mammalian-wide allometric pattern, CREA (craniofacial evolutionary allometry), where larger species have proportionally longer faces. Species with higher morphological integration and species more biased toward CREA have diverged farther from their ancestors, and Ruminantia as a clade diversified farther than expected in the direction of CREA. Our analyses indicate that CREA acts as an evolutionary "line of least resistance" and facilitates morphological diversification due to its alignment with the browser-grazer continuum. Together, our results demonstrate that constraints at the population level can produce highly directional patterns of phenotypic evolution at the macroevolutionary scale. Further research is needed to explore how CREA has been exploited in other mammalian clades.
Assuntos
Cabeça , Crânio , Humanos , Animais , Ruminantes , FamíliaRESUMO
Introduction: Our limited understanding of the mechanisms that trigger the emergence of Alzheimer's disease (AD) has contributed to the lack of interventions that stop, prevent, or fully treat this disease. We believe that the development of a non-human primate model of AD will be an essential step toward overcoming limitations of other model systems and is crucial for investigating primate-specific mechanisms underlying the cellular and molecular root causes of the pathogenesis and progression of AD. Methods: A new consortium has been established with funding support from the National Institute on Aging aimed at the generation, characterization, and validation of Marmosets As Research Models of AD (MARMO-AD). This consortium will study gene-edited marmoset models carrying genetic risk for AD and wild-type genetically diverse aging marmosets from birth throughout their lifespan, using non-invasive longitudinal assessments. These include characterizing the genetic, molecular, functional, behavioral, cognitive, and pathological features of aging and AD. Results: The consortium successfully generated viable founders carrying PSEN1 mutations in C410Y and A426P using CRISPR/Cas9 approaches, with germline transmission demonstrated in the C410Y line. Longitudinal characterization of these models, their germline offspring, and normal aging outbred marmosets is ongoing. All data and resources from this consortium will be shared with the greater AD research community. Discussion: By establishing marmoset models of AD, we will be able to investigate primate-specific cellular and molecular root causes that underlie the pathogenesis and progression of AD, overcome limitations of other model organisms, and support future translational studies to accelerate the pace of bringing therapies to patients.
RESUMO
INTRODUCTION: Genome-wide association studies (GWAS) for late onset Alzheimer's disease (AD) may miss genetic variants relevant for delineating disease stages when using clinically defined case/control as a phenotype due to its loose definition and heterogeneity. METHODS: We use a transfer learning technique to train three-dimensional convolutional neural network (CNN) models based on structural magnetic resonance imaging (MRI) from the screening stage in the Alzheimer's Disease Neuroimaging Initiative consortium to derive image features that reflect AD progression. RESULTS: CNN-derived image phenotypes are significantly associated with fasting metabolites related to early lipid metabolic changes as well as insulin resistance and with genetic variants mapped to candidate genes enriched for amyloid beta degradation, tau phosphorylation, calcium ion binding-dependent synaptic loss, APP-regulated inflammation response, and insulin resistance. DISCUSSION: This is the first attempt to show that non-invasive MRI biomarkers are linked to AD progression characteristics, reinforcing their use in early AD diagnosis and monitoring.
RESUMO
The structure of environmentally induced phenotypic covariation can influence the effective strength and magnitude of natural selection. Yet our understanding of the factors that contribute to and influence the evolutionary lability of such covariation is poor. Most studies have either examined environmental variation without accounting for covariation, or examined phenotypic and genetic covariation without distinguishing the environmental component. In this study, we examined the effect of mutational perturbations on different properties of environmental covariation, as well as mean shape. We use strains of Drosophila melanogaster bearing well-characterized mutations known to influence wing shape, as well as naturally derived strains, all reared under carefully controlled conditions and with the same genetic background. We find that mean shape changes more freely than the covariance structure, and that different properties of the covariance matrix change independently from each other. The perturbations affect matrix orientation more than they affect matrix eccentricity or total variance. Yet, mutational effects on matrix orientation do not cluster according to the developmental pathway that they target. These results suggest that it might be useful to consider a more general concept of "decanalization," involving all aspects of variation and covariation.