Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Development ; 150(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37102682

RESUMO

Alveolar development and repair require tight spatiotemporal regulation of numerous signalling pathways that are influenced by chemical and mechanical stimuli. Mesenchymal cells play key roles in numerous developmental processes. Transforming growth factor-ß (TGFß) is essential for alveologenesis and lung repair, and the G protein α subunits Gαq and Gα11 (Gαq/11) transmit mechanical and chemical signals to activate TGFß in epithelial cells. To understand the role of mesenchymal Gαq/11 in lung development, we generated constitutive (Pdgfrb-Cre+/-;Gnaqfl/fl;Gna11-/-) and inducible (Pdgfrb-Cre/ERT2+/-;Gnaqfl/fl;Gna11-/-) mesenchymal Gαq/11 deleted mice. Mice with constitutive Gαq/11 gene deletion exhibited abnormal alveolar development, with suppressed myofibroblast differentiation, altered mesenchymal cell synthetic function, and reduced lung TGFß2 deposition, as well as kidney abnormalities. Tamoxifen-induced mesenchymal Gαq/11 gene deletion in adult mice resulted in emphysema associated with reduced TGFß2 and elastin deposition. Cyclical mechanical stretch-induced TGFß activation required Gαq/11 signalling and serine protease activity, but was independent of integrins, suggesting an isoform-specific role for TGFß2 in this model. These data highlight a previously undescribed mechanism of cyclical stretch-induced Gαq/11-dependent TGFß2 signalling in mesenchymal cells, which is imperative for normal alveologenesis and maintenance of lung homeostasis.


Assuntos
Receptor beta de Fator de Crescimento Derivado de Plaquetas , Fator de Crescimento Transformador beta , Camundongos , Animais , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Homeostase
2.
Am J Physiol Lung Cell Mol Physiol ; 324(3): L271-L284, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36594851

RESUMO

Airway remodeling occurs in chronic asthma leading to increased airway smooth muscle (ASM) mass and extracellular matrix (ECM) deposition. Although extensively studied in murine airways, studies report only selected larger airways at one time-point meaning the spatial distribution and resolution of remodeling are poorly understood. Here we use a new method allowing comprehensive assessment of the spatial and temporal changes in ASM, ECM, and epithelium in large numbers of murine airways after allergen challenge. Using image processing to analyze 20-50 airways per mouse from a whole lung section revealed increases in ASM and ECM after allergen challenge were greater in small and large rather than intermediate airways. ASM predominantly accumulated adjacent to the basement membrane, whereas ECM was distributed across the airway wall. Epithelial hyperplasia was most marked in small and intermediate airways. After challenge, ASM changes resolved over 7 days, whereas ECM and epithelial changes persisted. The new method suggests large and small airways remodel differently, and the long-term consequences of airway inflammation may depend more on ECM and epithelial changes than ASM. The improved quantity and quality of unbiased data provided by the method reveals important spatial differences in remodeling and could set new analysis standards for murine asthma models.


Assuntos
Asma , Pulmão , Camundongos , Animais , Músculo Liso , Matriz Extracelular/fisiologia , Remodelação das Vias Aéreas/fisiologia , Alérgenos
3.
Am J Respir Cell Mol Biol ; 58(5): 594-603, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29053339

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by accumulation of extracellular matrix (ECM) proteins and fibroblast proliferation. ECM cross-linking enzymes have been implicated in fibrotic diseases, and we hypothesized that the ECM in IPF is abnormally cross-linked, which enhances fibroblast growth and resistance to normal ECM turnover. We used a combination of in vitro ECM preparations and in vivo assays to examine the expression of cross-linking enzymes and the effect of their inhibitors on fibroblast growth and ECM turnover. Lysyl oxidase-like 1 (LOXL1), LOXL2, LOXL3, and LOXL4 were expressed equally in control and IPF-derived fibroblasts. Transglutaminase 2 was more strongly expressed in IPF fibroblasts. LOXL2-, transglutaminase 2-, and transglutaminase-generated cross-links were strongly expressed in IPF lung tissue. Fibroblasts grown on IPF ECM had higher LOXL3 protein expression and transglutaminase activity than those grown on control ECM. IPF-derived ECM also enhanced fibroblast adhesion and proliferation compared with control ECM. Inhibition of lysyl oxidase and transglutaminase activity during ECM formation affected ECM structure as visualized by electron microscopy, and it reduced the enhanced fibroblast adhesion and proliferation of IPF ECM to control levels. Inhibition of transglutaminase, but not of lysyl oxidase, activity enhanced the turnover of ECM in vitro. In bleomycin-treated mice, during the postinflammatory fibrotic phase, inhibition of transglutaminases was associated with a reduction in whole-lung collagen. Our findings suggest that the ECM in IPF may enhance pathological cross-linking, which contributes to increased fibroblast growth and resistance to normal ECM turnover to drive lung fibrosis.


Assuntos
Remodelação das Vias Aéreas , Proliferação de Células , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Aminoácido Oxirredutases/metabolismo , Animais , Bleomicina , Adesão Celular , Células Cultivadas , Cistamina/farmacologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/ultraestrutura , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/metabolismo , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/prevenção & controle , Pulmão/efeitos dos fármacos , Pulmão/ultraestrutura , Camundongos Endogâmicos C57BL , Proteína 2 Glutamina gama-Glutamiltransferase , Proteólise , Transglutaminases/antagonistas & inibidores , Transglutaminases/metabolismo
4.
J Biol Chem ; 291(18): 9540-53, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26861876

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with high mortality. Active TGFß1 is considered central to the pathogenesis of IPF. A major mechanism of TGFß1 activation in the lung involves the epithelially restricted αvß6 integrin. Expression of the αvß6 integrin is dramatically increased in IPF. How αvß6 integrin expression is regulated in the pulmonary epithelium is unknown. Here we identify a region in the ß6 subunit gene (ITGB6) promoter acting to markedly repress basal gene transcription, which responds to both the Ets domain-containing protein Elk1 (Elk1) and the glucocorticoid receptor (GR). Both Elk1 and GR can regulate αvß6 integrin expression in vitro We demonstrate Elk1 binding to the ITGB6 promoter basally and that manipulation of Elk1 or Elk1 binding alters ITGB6 promoter activity, gene transcription, and αvß6 integrin expression. Crucially, we find that loss of Elk1 causes enhanced Itgb6 expression and exaggerated lung fibrosis in an in vivo model of fibrosis, whereas the GR agonist dexamethasone inhibits Itgb6 expression. Moreover, Elk1 dysregulation is present in epithelium from patients with IPF. These data reveal a novel role for Elk1 regulating ITGB6 expression and highlight how dysregulation of Elk1 can contribute to human disease.


Assuntos
Antígenos de Neoplasias/biossíntese , Regulação da Expressão Gênica , Integrinas/biossíntese , Fibrose Pulmonar/metabolismo , Transdução de Sinais , Transcrição Gênica , Proteínas Elk-1 do Domínio ets/metabolismo , Animais , Antígenos de Neoplasias/genética , Linhagem Celular Transformada , Humanos , Integrinas/genética , Camundongos , Camundongos Knockout , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Elk-1 do Domínio ets/genética
5.
Lab Invest ; 96(6): 623-31, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26974397

RESUMO

Idiopathic pulmonary fibrosis is a progressive, fatal disease with limited treatment options. Protease-mediated transforming growth factor-ß (TGF-ß) activation has been proposed as a pathogenic mechanism of lung fibrosis. Protease activity in the lung is tightly regulated by protease inhibitors, particularly secretory leukocyte protease inhibitor (SLPI). The bleomycin model of lung fibrosis was used to determine the effect of increased protease activity in the lungs of Slpi(-/-) mice following injury. Slpi(-/-), and wild-type, mice received oropharyngeal administration of bleomycin (30 IU) and the development of pulmonary fibrosis was assessed. Pro and active forms of matrix metalloproteinase (MMP)-2 and MMP-9 were measured. Lung fibrosis was determined by collagen subtype-specific gene expression, hydroxyproline concentration, and histological assessment. Alveolar TGF-ß activation was measured using bronchoalveolar lavage cell pSmad2 levels and global TGF-ß activity was assessed by pSmad2 immunohistochemistry. The active-MMP-9 to pro-MMP-9 ratio was significantly increased in Slpi(-/-) animals compared with wild-type animals, demonstrating enhanced metalloproteinase activity. Wild-type animals showed an increase in TGF-ß activation following bleomycin, with a progressive and sustained increase in collagen type I, alpha 1 (Col1α1), III, alpha 1(Col3α1), IV, alpha 1(Col4α1) mRNA expression, and a significant increase in total lung collagen 28 days post bleomycin. In contrast Slpi(-/-) mice showed no significant increase of alveolar TGF-ß activity following bleomycin, above their already elevated levels, although global TGF-ß activity did increase. Slpi(-/-) mice had impaired collagen gene expression but animals demonstrated minimal reduction in lung fibrosis compared with wild-type animals. These data suggest that enhanced proteolysis does not further enhance TGF-ß activation, and inhibits sustained Col1α1, Col3α1, and Col4α1 gene expression following lung injury. However, these changes do not prevent the development of lung fibrosis. Overall, these data suggest that the absence of Slpi does not markedly modify the development of lung fibrosis following bleomycin-induced lung injury.


Assuntos
Fibrose Pulmonar Idiopática/etiologia , Lesão Pulmonar/etiologia , Inibidor Secretado de Peptidases Leucocitárias/deficiência , Animais , Bleomicina/toxicidade , Colágeno/genética , Colágeno/metabolismo , Deleção de Genes , Hidroxiprolina/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/genética , Lesão Pulmonar/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Inibidor Secretado de Peptidases Leucocitárias/genética , Fator de Crescimento Transformador beta/metabolismo
6.
Thorax ; 71(6): 565-7, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26911575

RESUMO

Caffeine is a commonly used food additive found naturally in many products. In addition to potently stimulating the central nervous system caffeine is able to affect various systems within the body including the cardiovascular and respiratory systems. Importantly, caffeine is used clinically to treat apnoea and bronchopulmonary dysplasia in premature babies. Recently, caffeine has been shown to exhibit antifibrotic effects in the liver in part through reducing collagen expression and deposition, and reducing expression of the profibrotic cytokine TGFß. The potential antifibrotic effects of caffeine in the lung have not previously been investigated. Using a combined in vitro and ex vivo approach we have demonstrated that caffeine can act as an antifibrotic agent in the lung by acting on two distinct cell types, namely epithelial cells and fibroblasts. Caffeine inhibited TGFß activation by lung epithelial cells in a concentration-dependent manner but had no effect on TGFß activation in fibroblasts. Importantly, however, caffeine abrogated profibrotic responses to TGFß in lung fibroblasts. It inhibited basal expression of the α-smooth muscle actin gene and reduced TGFß-induced increases in profibrotic genes. Finally, caffeine reduced established bleomycin-induced fibrosis after 5 days treatment in an ex vivo precision-cut lung slice model. Together, these findings suggest that there is merit in further investigating the potential use of caffeine, or its analogues, as antifibrotic agents in the lung.


Assuntos
Cafeína/farmacologia , Células Epiteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Fibrose Pulmonar/genética , Transdução de Sinais/efeitos dos fármacos
7.
Magn Reson Med ; 76(4): 1224-35, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26507239

RESUMO

PURPOSE: Asthma is a disease of increasing worldwide importance that calls for new investigative methods. Ex vivo lung tissue is being increasingly used to study functional respiratory parameters independent of confounding systemic considerations but also to reduce animal numbers and associated research costs. In this work, a straightforward laboratory method is advanced to probe dynamic changes in gas inhalation patterns by using an ex vivo small animal ovalbumin (OVA) model of human asthma. METHODS: Hyperpolarized (hp) (129) Xe was actively inhaled by the excised lungs exposed to a constant pressure differential that mimicked negative pleural cavity pressure. The method enabled hp (129) Xe MRI of airway responsiveness to intravenous methacholine (MCh) and airway challenge reversal through salbutamol. RESULTS: Significant differences were demonstrated between control and OVA challenged animals on global lung hp (129) Xe gas inhalation with P < 0.05 at MCh dosages above 460 µg. Spatial mapping of the regional hp gas distribution revealed an approximately three-fold increase in heterogeneity for the asthma model organs. CONCLUSION: The experimental results from this proof of concept work suggest that the ex vivo hp noble gas imaging arrangement and the applied image analysis methodology may be useful as an adjunct to current diagnostic techniques. Magn Reson Med 76:1224-1235, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Assuntos
Asma/diagnóstico por imagem , Asma/fisiopatologia , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Troca Gasosa Pulmonar , Isótopos de Xenônio/farmacocinética , Administração por Inalação , Animais , Simulação por Computador , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Modelos Biológicos , Imagem Molecular/métodos , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual , Isótopos de Xenônio/administração & dosagem
8.
J Biol Chem ; 289(51): 35246-63, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25339175

RESUMO

Influenza infection exacerbates chronic pulmonary diseases, including idiopathic pulmonary fibrosis. A central pathway in the pathogenesis of idiopathic pulmonary fibrosis is epithelial injury leading to activation of transforming growth factor ß (TGFß). The mechanism and functional consequences of influenza-induced activation of epithelial TGFß are unclear. Influenza stimulates toll-like receptor 3 (TLR3), which can increase RhoA activity, a key event prior to activation of TGFß by the αvß6 integrin. We hypothesized that influenza would stimulate TLR3 leading to activation of latent TGFß via αvß6 integrin in epithelial cells. Using H1152 (IC50 6.1 µm) to inhibit Rho kinase and 6.3G9 to inhibit αvß6 integrins, we demonstrate their involvement in influenza (A/PR/8/34 H1N1) and poly(I:C)-induced TGFß activation. We confirm the involvement of TLR3 in this process using chloroquine (IC50 11.9 µm) and a dominant negative TLR3 construct (pZERO-hTLR3). Examination of lungs from influenza-infected mice revealed augmented levels of collagen deposition, phosphorylated Smad2/3, αvß6 integrin, and apoptotic cells. Finally, we demonstrate that αvß6 integrin-mediated TGFß activity following influenza infection promotes epithelial cell death in vitro and enhanced collagen deposition in vivo and that this response is diminished in Smad3 knock-out mice. These data show that H1N1 and poly(I:C) can induce αvß6 integrin-dependent TGFß activity in epithelial cells via stimulation of TLR3 and suggest a novel mechanism by which influenza infection may promote collagen deposition in fibrotic lung disease.


Assuntos
Antígenos de Neoplasias/metabolismo , Colágeno/metabolismo , Células Epiteliais/metabolismo , Integrinas/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Fator de Crescimento Transformador beta/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Antígenos de Neoplasias/genética , Antivirais/farmacologia , Apoptose , Linhagem Celular Transformada , Cães , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno , Humanos , Immunoblotting , Vírus da Influenza A Subtipo H1N1/fisiologia , Integrinas/genética , Pulmão/metabolismo , Pulmão/virologia , Células Madin Darby de Rim Canino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/virologia , Fosforilação/efeitos dos fármacos , Poli I-C/farmacologia , Proteína Smad3/genética , Proteína Smad3/metabolismo , Receptor 3 Toll-Like/metabolismo , Fator de Crescimento Transformador beta/genética , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo
9.
J Immunol ; 187(11): 6094-107, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22025551

RESUMO

Severe asthma is associated with airway remodeling, characterized by structural changes including increased smooth muscle mass and matrix deposition in the airway, leading to deteriorating lung function. TGF-ß is a pleiotropic cytokine leading to increased synthesis of matrix molecules by human airway smooth muscle (HASM) cells and is implicated in asthmatic airway remodeling. TGF-ß is synthesized as a latent complex, sequestered in the extracellular matrix, and requires activation for functionality. Activation of latent TGF-ß is the rate-limiting step in its bioavailability. This study investigated the effect of the contraction agonists LPA and methacholine on TGF-ß activation by HASM cells and its role in the development of asthmatic airway remodeling. The data presented show that LPA and methacholine induced TGF-ß activation by HASM cells via the integrin αvß5. Our findings highlight the importance of the ß5 cytoplasmic domain because a polymorphism in the ß5 subunit rendered the integrin unable to activate TGF-ß. To our knowledge, this is the first description of a biologically relevant integrin that is unable to activate TGF-ß. These data demonstrate that murine airway smooth muscle cells express αvß5 integrins and activate TGF-ß. Finally, these data show that inhibition, or genetic loss, of αvß5 reduces allergen-induced increases in airway smooth muscle thickness in two models of asthma. These data highlight a mechanism of TGF-ß activation in asthma and support the hypothesis that bronchoconstriction promotes airway remodeling via integrin mediated TGF-ß activation.


Assuntos
Remodelação das Vias Aéreas/imunologia , Asma/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores de Vitronectina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Asma/imunologia , Asma/patologia , Western Blotting , Linhagem Celular , Separação Celular , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/patologia , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Vitronectina/imunologia , Sistema Respiratório , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Fator de Crescimento Transformador beta/imunologia
10.
Int J Biochem Cell Biol ; 120: 105668, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31877385

RESUMO

ETS domain-containing protein-1 (ELK1) is a transcription factor important in regulating αvß6 integrin expression. αvß6 integrins activate the profibrotic cytokine Transforming Growth Factor ß1 (TGFß1) and are increased in the alveolar epithelium in idiopathic pulmonary fibrosis (IPF). IPF is a disease associated with aging and therefore we hypothesised that aged animals lacking Elk1 globally would develop spontaneous fibrosis in organs where αvß6 mediated TGFß activation has been implicated. Here we identify that Elk1-knockout (Elk1-/0) mice aged to one year developed spontaneous fibrosis in the absence of injury in both the lung and the liver but not in the heart or kidneys. The lungs of Elk1-/0 aged mice demonstrated increased collagen deposition, in particular collagen 3α1, located in small fibrotic foci and thickened alveolar walls. Despite the liver having relatively low global levels of ELK1 expression, Elk1-/0 animals developed hepatosteatosis and fibrosis. The loss of Elk1 also had differential effects on Itgb1, Itgb5 and Itgb6 expression in the four organs potentially explaining the phenotypic differences in these organs. To understand the potential causes of reduced ELK1 in human disease we exposed human lung epithelial cells and murine lung slices to cigarette smoke extract, which lead to reduced ELK1 expression andmay explain the loss of ELK1 in human disease. These data support a fundamental role for ELK1 in protecting against the development of progressive fibrosis via transcriptional regulation of beta integrin subunit genes, and demonstrate that loss of ELK1 can be caused by cigarette smoke.


Assuntos
Brônquios/patologia , Pulmão/patologia , Proteínas Elk-1 do Domínio ets/deficiência , Fatores Etários , Animais , Brônquios/metabolismo , Fibrose/metabolismo , Fibrose/patologia , Humanos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Elk-1 do Domínio ets/metabolismo
11.
Nat Commun ; 11(1): 4659, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938936

RESUMO

The αvß6 integrin plays a key role in the activation of transforming growth factor-ß (TGFß), a pro-fibrotic mediator that is pivotal to the development of idiopathic pulmonary fibrosis (IPF). We identified a selective small molecule αvß6 RGD-mimetic, GSK3008348, and profiled it in a range of disease relevant pre-clinical systems. To understand the relationship between target engagement and inhibition of fibrosis, we measured pharmacodynamic and disease-related end points. Here, we report, GSK3008348 binds to αvß6 with high affinity in human IPF lung and reduces downstream pro-fibrotic TGFß signaling to normal levels. In human lung epithelial cells, GSK3008348 induces rapid internalization and lysosomal degradation of the αvß6 integrin. In the murine bleomycin-induced lung fibrosis model, GSK3008348 engages αvß6, induces prolonged inhibition of TGFß signaling and reduces lung collagen deposition and serum C3M, a marker of IPF disease progression. These studies highlight the potential of inhaled GSK3008348 as an anti-fibrotic therapy.


Assuntos
Butiratos/farmacologia , Fibrose Pulmonar Idiopática/tratamento farmacológico , Integrinas/antagonistas & inibidores , Naftiridinas/farmacologia , Pirazóis/farmacologia , Pirrolidinas/farmacologia , Administração por Inalação , Animais , Antígenos de Neoplasias/metabolismo , Bleomicina/toxicidade , Butiratos/administração & dosagem , Butiratos/metabolismo , Butiratos/farmacocinética , Colágeno/metabolismo , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/patologia , Integrinas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Naftiridinas/administração & dosagem , Naftiridinas/metabolismo , Naftiridinas/farmacocinética , Pirazóis/administração & dosagem , Pirazóis/metabolismo , Pirazóis/farmacocinética , Pirrolidinas/administração & dosagem , Pirrolidinas/metabolismo , Pirrolidinas/farmacocinética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Tomografia Computadorizada de Emissão de Fóton Único , Fator de Crescimento Transformador beta/metabolismo , Pesquisa Translacional Biomédica
12.
Lancet Respir Med ; 5(12): 946-955, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29150411

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal disorder with a variable disease trajectory. The aim of this study was to assess potential biomarkers to predict outcomes for people with IPF. METHODS: PROFILE is a large prospective longitudinal cohort of treatment-naive patients with IPF. We adopted a two-stage discovery and validation design using patients from the PROFILE cohort. For the discovery analysis, we examined 106 patients and 50 age and sex matched healthy controls from Nottingham University Hospitals NHS Trust and the Royal Brompton Hospital. We did an unbiased, multiplex immunoassay assessment of 123 biomarkers. We further investigated promising novel markers by immunohistochemical assessment of IPF lung tissue. In the validation analysis, we examined samples from 206 people with IPF from among the remaining 212 patients recruited to PROFILE Central England. We used the samples to attempt to replicate the biomarkers identified from the discovery analysis by use of independent immunoassays for each biomarker. We investigated the predictive power of the selected biomarkers to identify individuals with IPF who were at risk of progression or death. The PROFILE studies are registered on ClinicalTrials.gov, numbers NCT01134822 (PROFILE Central England) and NCT01110694 (PROFILE Royal Brompton Hospital). FINDINGS: In the discovery analysis, we identified four serum biomarkers (surfactant protein D, matrix metalloproteinase 7, CA19-9, and CA-125) that were suitable for replication. Histological assessment of CA19-9 and CA-125 suggested that these proteins were markers of epithelial damage. Replication analysis showed that baseline values of surfactant protein D (46·6 ng/mL vs 34·6 ng/mL, p=0·0018) and CA19-9 (53·7 U/mL vs 22·2 U/mL; p<0·0001) were significantly higher in patients with progressive disease than in patients with stable disease, and rising concentrations of CA-125 over 3 months were associated with increased risk of mortality (HR 2·542, 95% CI 1·493-4·328, p=0·00059). INTERPRETATION: We have identified serum proteins secreted from metaplastic epithelium that can be used to predict disease progression and death in IPF. FUNDING: GlaxoSmithKline R&D and the UK Medical Research Council.


Assuntos
Antígeno Ca-125/sangue , Antígeno CA-19-9/sangue , Progressão da Doença , Fibrose Pulmonar Idiopática/sangue , Metaloproteinase 7 da Matriz/sangue , Proteína D Associada a Surfactante Pulmonar/sangue , Biomarcadores/sangue , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Epitélio/metabolismo , Epitélio/patologia , Feminino , Humanos , Fibrose Pulmonar Idiopática/mortalidade , Estudos Longitudinais , Pulmão/metabolismo , Pulmão/patologia , Masculino , Valor Preditivo dos Testes , Estudos Prospectivos
13.
Sci Signal ; 9(451): ra104, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27811142

RESUMO

Heterotrimeric guanine nucleotide-binding protein (G protein) signaling links hundreds of G protein-coupled receptors with four G protein signaling pathways. Two of these, one mediated by Gq and G11 (Gq/11) and the other by G12 and G13 (G12/13), are implicated in the force-dependent activation of transforming growth factor-ß (TGFß) in lung epithelial cells. Reduced TGFß activation in alveolar cells leads to emphysema, whereas enhanced TGFß activation promotes acute lung injury and idiopathic pulmonary fibrosis. Therefore, precise control of alveolar TGFß activation is essential for alveolar homeostasis. We investigated the involvement of the Gq/11 and G12/13 pathways in epithelial cells in generating active TGFß and regulating alveolar inflammation. Mice deficient in both Gαq and Gα11 developed inflammation that was primarily caused by alternatively activated (M2-polarized) macrophages, enhanced matrix metalloproteinase 12 (MMP12) production, and age-related alveolar airspace enlargement consistent with emphysema. Mice with impaired Gq/11 signaling had reduced stretch-mediated generation of TGFß by epithelial cells and enhanced macrophage MMP12 synthesis but were protected from the effects of ventilator-induced lung injury. Furthermore, synthesis of the cytokine interleukin-33 (IL-33) was increased in these alveolar epithelial cells, resulting in the M2-type polarization of alveolar macrophages independently of the effect on TGFß. Our results suggest that alveolar Gq/11 signaling maintains alveolar homeostasis and likely independently increases TGFß activation in response to the mechanical stress of the epithelium and decreases epithelial IL-33 synthesis. Together, these findings suggest that disruption of Gq/11 signaling promotes inflammatory emphysema but protects against mechanically induced lung injury.


Assuntos
Enfisema/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Interleucina-33/metabolismo , Macrófagos Alveolares/metabolismo , Mucosa Respiratória/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Enfisema/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Interleucina-33/genética , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Camundongos , Camundongos Transgênicos , Mucosa Respiratória/patologia , Fator de Crescimento Transformador beta/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo
14.
J Nucl Med ; 54(12): 2146-52, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24167080

RESUMO

UNLABELLED: Transforming growth factor ß activation by the αvß6 integrin is central to the pathogenesis of idiopathic pulmonary fibrosis. Expression of the αvß6 integrin is increased in fibrotic lung tissue and is a promising therapeutic target for treatment of the disease. Currently, measurement of αvß6 integrin levels in the lung requires immunohistochemical analysis of biopsy samples. This procedure is clinically impractical for many patients with pulmonary fibrosis, and a noninvasive strategy for measuring αvß6 integrin levels in the lungs is urgently required to facilitate monitoring of disease progression and therapeutic responses. METHODS: Using a murine model of bleomycin-induced lung injury, we assessed the binding of intravenously administered (111)In-labeled αvß6-specific (diethylenetriamine pentaacetate-tetra [DTPA]-A20FMDV2) or control (DTPA-A20FMDVran) peptide by nanoSPECT/CT imaging. Development of fibrosis was assessed by lung hydroxyproline content, and αvß6 protein and itgb6 messenger RNA were measured in the lungs. RESULTS: Maximal binding of (111)In-labeled A20FMDV2 peptide to αvß6 integrins was detected in the lungs 1 h after intravenous administration. No significant binding was detected in mice injected with control peptide. Integrin binding was increased in the lungs of bleomycin-, compared with saline-, exposed mice and was attenuated by pretreatment with αvß6-blocking antibodies. Levels of (111)In-labeled A20FMDV2 peptide correlated positively with hydroxyproline, αvß6 protein, and itgb6 messenger RNA levels. CONCLUSION: We have developed a highly sensitive, quantifiable, and noninvasive technique for measuring αvß6 integrin levels within the lung. Measurement of αvß6 integrins by SPECT/CT scanning has the potential for use in stratifying therapy for patients with pulmonary fibrosis.


Assuntos
Antígenos de Neoplasias/metabolismo , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Integrinas/metabolismo , Imagem Multimodal , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X , Animais , Antígenos de Neoplasias/genética , Biomarcadores/metabolismo , Determinação de Ponto Final , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Radioisótopos de Índio , Integrinas/genética , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA