Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(5)2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30862087

RESUMO

Celiac disease (CD) is a gluten-dependent autoimmune disorder affecting a significant percentage of the general population, with increasing incidence particularly for children. Reliable analytical methods suitable for the serological diagnosis of the disorder are urgently required for performing both the early diagnosis and the follow-up of a patient adhering to a gluten-free diet. Herein we report on the preparation and application of a novel electrochemical immunosensor based on the use of ensembles of gold nanoelectrodes (NEEs) for the detection of anti-tissue transglutaminase (anti-tTG), which is considered one reliable serological marker for CD. To this end, we take advantage of the composite nature of the nanostructured surface of membrane-templated NEEs by functionalizing the polycarbonate surface of the track-etched membrane with tissue transglutaminase. Incubation of the functionalized NEE in anti-tTG samples results in the capture of the anti-tTG antibody. Confirmation of the recognition event is achieved by incubating the NEE with a secondary antibody labelled with horseradish peroxidase (HRP): in the presence of H2O2 as substrate and hydroquinone as redox mediator, an electrocatalytic current is indeed generated whose increment is proportional to the amount of anti-tTG captured from the sample. The optimized sensor allows a detection limit of 1.8 ng mL-1, with satisfactory selectivity and reproducibility. Analysis of serum samples from 28 individuals, some healthy and some affected by CD, furnished analytical results comparable with those achieved by classical fluoroenzyme immunoassay (FEIA). We note that the NEE-based immunosensor developed here detects the IgG isotype of anti-tTG, while FEIA detects the IgA isotype, which is not a suitable diagnostic marker for IgA-deficient patients.


Assuntos
Técnicas Biossensoriais/métodos , Proteínas de Ligação ao GTP/metabolismo , Imunoglobulina G/metabolismo , Transglutaminases/metabolismo , Doença Celíaca/metabolismo , Eletroquímica/métodos , Eletrodos , Humanos , Imunoensaio , Proteína 2 Glutamina gama-Glutamiltransferase
2.
Anal Chem ; 87(24): 12080-7, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26556023

RESUMO

We report here the design of a novel immunosensor and its application for celiac disease diagnosis, based on an electrogenerated chemiluminescence (ECL) readout, using membrane-templated gold nanoelectrode ensembles (NEEs) as a detection platform. An original sensing strategy is presented by segregating spatially the initial electrochemical reaction and the location of the immobilized biomolecules where ECL is finally emitted. The recognition scaffold is the following: tissue transglutaminase (tTG) is immobilized as a capturing agent on the polycarbonate (PC) surface of the track-etched templating membrane. It captures the target tissue transglutaminase antibody (anti-tTG), and finally allows the immobilization of a streptavidin-modified ruthenium-based ECL label via reaction with a suitable biotinylated secondary antibody. The application of an oxidizing potential in a tri-n-propylamine (TPrA) solution generates an intense and sharp ECL signal, suitable for analytical purposes. Voltammetric and ECL analyses evidenced that the ruthenium complex is not oxidized directly at the surface of the nanoelectrodes; instead ECL is generated following the TPrA oxidation, which produces the TPrA•+ and TPrA• radicals. With NEEs operating under total overlap diffusion conditions, high local fluxes of these reactive radicals are produced by the nanoelectrodes in the immediate vicinity of the ECL labels, so that they efficiently generate the ECL signal. The radicals can diffuse over short distances and react with the Ru(bpy)32+ label. In addition, the ECL emission is obtained by applying a potential of 0.88 V versus Ag/AgCl, which is about 0.3 V lower than when ECL is initiated by the electrochemical oxidation of Ru(bpy)3(2+). The immunosensor provides ECL signals which scale with anti-tTG concentration with a linearity range between 1.5 ng·mL­1 and 10 µg·mL­1 and a detection limit of 0.5 ng·mL­1. The sensor is finally applied to the analysis of anti-tTG in human serum samples, showing to be suitable to discriminate between healthy and celiac patients.


Assuntos
Doença Celíaca/diagnóstico , Eletroquímica/instrumentação , Eletrodos , Medições Luminescentes/instrumentação , Nanotecnologia , Anticorpos/sangue , Biomarcadores/sangue , Humanos , Limite de Detecção , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA