Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Crit Rev Food Sci Nutr ; : 1-16, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436130

RESUMO

The potential utilization of starch as a particle-based emulsifier in the preparation of Pickering emulsions is gaining interest within the food industry. Starch is an affordable and abundant functional ingredient, which makes it an excellent candidate for the stabilization of Pickering emulsions. This review article focuses on the formation, stabilization, and properties of Pickering emulsions formulated using starch-based particles and their derivatives. First, methods of isolating and modifying starch-based particles are highlighted. The key parameters governing the properties of starch-stabilized Pickering emulsions are then discussed, including the concentration, size, morphology, charge, and wettability of the starch-based particles, as well as the type and size of the oil droplets. The physicochemical mechanisms underlying the ability of starch-based particles to form and stabilize Pickering emulsions are also discussed. Starch-based Pickering emulsions tend to be more resistant to coalescence than conventional emulsions, which is useful for some food applications. Potential applications of starch-stabilized Pickering emulsions are reviewed, as well as recent studies on their gastrointestinal fate. The information provided may stimulate the utilization of starch-based Pickering emulsions in food and other industries.

2.
Crit Rev Food Sci Nutr ; 63(23): 6393-6411, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35089844

RESUMO

Conventionally used petrochemical-based plastics are poorly degradable and cause severe environmental pollution. Alternatively, biopolymers (e.g., polysaccharides, proteins, lipids, and their blends) are biodegradable and environment-friendly, and thus their use in packaging technologies has been on the rise. Spoilage of food by mycotoxigenic fungi poses a severe threat to human and animal health. Hence, because of the adverse effects of synthetic preservatives, active packaging as an effective technique for controlling and decontaminating fungi and related mycotoxins has attracted considerable interest. The current review aims to provide an overview of the prevention of fungi and mycotoxins through active packaging. The impact of different additives on the antifungal and anti-mycotoxigenic functionality of packaging incorporating active films/coatings is also investigated. In addition, active packaging applications to control and decontaminate common fungi and mycotoxins in bakery products, cereal grains, fruits, nuts, and dairy products are also introduced. The results of recent studies have confirmed that biopolymer films and coatings incorporating antimicrobial agents provide great potential for controlling common fungi and mycotoxins and enhancing food quality and safety.


Assuntos
Anti-Infecciosos , Micotoxinas , Animais , Humanos , Fungos , Embalagem de Alimentos/métodos , Antifúngicos , Biopolímeros
3.
Crit Rev Food Sci Nutr ; : 1-25, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37366171

RESUMO

The projected global population is expected to reach around 9.7 billion by 2050, indicating a greater demand for proteins in the human diet. Cereal bran proteins (CBPs) have been identified as high-quality proteins, with potential applications in both the food and pharmaceutical industries. In 2020, global cereal grain production was 2.1 billion metric tonnes, including wheat, rice, corn, millet, barley, and oats. Cereal bran, obtained through milling, made up 10-20% of total cereal grain production, varying by grain type and milling degree. In this article, the molecular composition and nutritional value of CBPs are summarized, and recent advances in their extraction and purification are discussed. The functional properties of CBPs are then reviewed, including their solubility, binding, emulsifying, foaming, gelling, and thermal properties. Finally, current challenges to the application of CBPs in foods are highlighted, such as the presence of antinutritional factors, low digestibility, and allergenicity, as well as potential strategies to improve the nutritional and functional properties by overcoming these challenges. CBPs exhibit nutritional and functional attributes that are similar to those of other widely used plant-based protein sources. Thus, CBPs have considerable potential for use as ingredients in food, pharmaceutical, and other products.

4.
Crit Rev Food Sci Nutr ; : 1-18, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395603

RESUMO

The rise in the global population, which is projected to reach 9.7 billion by 2050, has resulted in an increased demand for proteins in the human diet. The green leaves of many plants are an affordable, abundant, and sustainable source of proteins suitable for human consumption. This article reviews the various sources of green leaf proteins that may play an important role in alleviating global malnutrition, including those from alfalfa, amaranth, cabbage, cassava, duckweed, moringa, olive, radish, spinach, sugar beet, and tea. The structure of green leaves and the location of the proteins within these leaves are described, as well as methods for extracting and purifying these proteins. The composition, nutritional profile, and functional attributes of green leaf proteins are then discussed. The potential advantages and disadvantages of using green leaf proteins as functional food ingredients are highlighted. The importance of obtaining a better understanding of the composition and structure of different green leaves and the proteins extracted from them is highlighted. This includes an assessment of non-protein nitrogen and anti-nutritional compounds that may be present. Furthermore, the impact of isolation and purification techniques on the functionality of the plant protein ingredients obtained must be carefully evaluated.

5.
Compr Rev Food Sci Food Saf ; 21(4): 3129-3152, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35674465

RESUMO

Ozone (O3 ) is an emerging eco-friendly technology that has been widely used in the beverage industry due to its broad spectrum of usages, such as fermentation, microbial inactivation, Clean-in-Place (CIP) systems, and postharvest treatment. Wine is among the most financially profitable sectors of the beverage industry. Ozone technology as an alternative approach to conventional methods to inhibit microbes in wine processing and wineries has attracted researchers' attention as this emerging technology will probably play important roles in wineries in the future. This review discusses the prospective applications of ozone in winemaking and wineries and elaborates on ozone's antimicrobial effects on the control of the broad spectrum of microorganisms during wine processing. Also, this paper provides discussions on its effects of O3  on wine quality and the benefits this emerging technology can bring to wineries. Ozone treatments can improve yeast fermentation by impacting the yeast ecology of postharvested wine grapes, mainly by affecting apiculate yeasts and adjusting the population of undesirable yeasts, such as Brettanomyces spp., during the fermentation process. Furthermore, ozone treatment may enhance wine's anthocyanin concentration, physicochemical properties, color, pH, oxidative stability, and concentration of pleasant volatile compounds and esters. This article presents important information to have a better understanding of the impact of ozone treatment on different stages of wine preparation.


Assuntos
Ozônio , Vitis , Vinho , Fermentação , Ozônio/farmacologia , Saccharomyces cerevisiae , Vinho/análise
6.
Food Chem ; 438: 137971, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37979261

RESUMO

The global demand for animal proteins is predicted to increase twofold by 2050. This has led to growing environmental and health apprehensions, thereby prompting the appraisal of alternative protein sources. Oilseed meals present a promising alternative due to their abundance in global production and inherent dietary protein content. The alkaline extraction remains the preferred technique for protein extraction from oilseed meals in commercial processes. However, the combination of innovative techniques has proven to be more effective in the recovery and functional modification of oilseed meal proteins (OMPs), resulting in improved protein quality and reduced allergenicity and environmental hazards. This manuscript explores the extraction of valuable proteins from sustainable sources, specifically by-products from the oil processing industry, using emerging technologies. Chemical structure, nutritional value, and functional properties of the main OMPs are evaluated with a particular focus on their potential application as nanocarriers for bioactive compounds.


Assuntos
Proteínas Alimentares , Óleos de Plantas , Sementes
7.
Food Chem ; 439: 138164, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091781

RESUMO

Amaranth proteins can be produced more sustainably than animal proteins, and they have amino acid compositions that are nutritionally balanced, which makes them attractive candidates for various applications in the food and pharmaceutical industries. This article provides an overview of the composition and techno-functional properties of amaranth protein, including its solubility, emulsification, gelation, foaming, and binding properties. These properties play an important role in the use of amaranth proteins for formulating nanoparticle-based delivery systems with good functional attributes. Amaranth proteins have structural and physicochemical properties suitable for fabricating protein-based nanoparticles. These nanoparticles can be used to encapsulate and control the release of bioactive compounds. However, challenges associated with the presence of anti-nutritional factors in amaranth proteins need to be addressed. These antinutrients negatively affect the bioavailability and digestibility of proteins and bioactive compounds. Hence, strategies to mitigate these challenges are discussed, including processing technologies and genetic engineering methods.


Assuntos
Alimentos , Nanopartículas , Animais , Solubilidade , Nanopartículas/química
8.
Food Chem ; 455: 139743, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38823135

RESUMO

Plant proteins are increasingly being used in the food industry due to their sustainability. They can be isolated from food industry waste and converted into value-added ingredients, promoting a more circular economy. In this study, ultrasound-assisted alkaline extraction (UAAE) was optimized to maximize the extraction yield and purity of protein ingredients from grapeseeds. Grapeseed protein was extracted using UAAE under different pH (9-11), temperature (20-50 °C), sonication time (15-45 min), and solid/solvent ratio (10-20 mL/g) conditions. The structural and functional attributes of grapeseed protein and its major fractions (albumins and glutelins) were investigated and compared. The albumin fractions had higher solubilities, emulsifying properties, and in vitro digestibilities but lower fluid binding capacities and thermal stability than the UAAE and glutelin fraction. These findings have the potential to boost our understanding of the structural and functional characteristics of grapeseed proteins, thereby increasing their potential applications in the food and other industries.

9.
Int J Biol Macromol ; 261(Pt 1): 129576, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253140

RESUMO

There is a pressing need for affordable, abundant, and sustainable sources of proteins to address the rising nutrient demands of a growing global population. The food and agriculture sectors produce significant quantities of waste and by-products during the growing, harvesting, storing, transporting, and processing of raw materials. These waste and by-products can sometimes be converted into valuable protein-rich ingredients with excellent functional and nutritional attributes, thereby contributing to a more circular economy. This review critically assesses the potential for agro-industrial wastes and by-products to contribute to global protein requirements. Initially, we discuss the origins and molecular characteristics of plant proteins derived from agro-industrial waste and by-products. We then discuss the techno-functional attributes, extraction methods, and modification techniques that are applied to these plant proteins. Finally, challenges linked to the safety, allergenicity, anti-nutritional factors, digestibility, and sensory attributes of plant proteins derived from these sources are highlighted. The utilization of agro-industrial by-products and wastes as an economical, abundant, and sustainable protein source could contribute towards achieving the Sustainable Development Agenda's 2030 goal of a "zero hunger world", as well as mitigating fluctuations in food availability and prices, which have detrimental impacts on global food security and nutrition.


Assuntos
Resíduos Industriais , Proteínas de Plantas , Alimentos , Agricultura
10.
Antioxidants (Basel) ; 13(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38671935

RESUMO

Plants have proven to be important sources for discovering new compounds that are useful in the treatment of various diseases due to their phytoconstituents. Clove (Syzygium aromaticum L.), an aromatic plant widely cultivated around the world, has been traditionally used for food preservation and medicinal purposes. In particular, clove essential oil (CEO) has attracted attention for containing various bioactive compounds, such as phenolics (eugenol and eugenol acetate), terpenes (ß-caryophyllene and α-humulene), and hydrocarbons. These constituents have found applications in cosmetics, food, and medicine industries due to their bioactivity. Pharmacologically, CEO has been tested against a variety of parasites and pathogenic microorganisms, demonstrating antibacterial and antifungal properties. Additionally, many studies have also demonstrated the analgesic, antioxidant, anticancer, antiseptic, and anti-inflammatory effects of this essential oil. However, CEO could degrade for different reasons, impacting its quality and bioactivity. To address this challenge, encapsulation is viewed as a promising strategy that could prolong the shelf life of CEO, improving its physicochemical stability and application in various areas. This review examines the phytochemical composition and biological activities of CEO and its constituents, as well as extraction methods to obtain it. Moreover, encapsulation strategies for CEO and numerous applications in different food fields are also highlighted.

11.
Int J Biol Macromol ; 256(Pt 1): 128273, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000584

RESUMO

Olive leaf, as an important by-product of olive farming, is generated from the pruning and harvesting of olive trees and represents >10 % of the total olive weight. The present study was conducted to evaluate the composition, functional and structural characterizations, as well as the in vitro digestibility of olive leaf proteins isolated from ultrasonic-assisted extraction, comparing to classical and industrial techniques. The ultrasound-assisted extraction of olive leaf protein was optimized by the simultaneous maximization of the yield and purity of protein using a Box-Behnken design (BBD) of response surface methodology (RSM). The results indicated that the optimal extraction conditions were as follows: pH of 10.99, temperature of 40.48 °C, sonication time of 47.25 min, and solvent/solid ratio of 24.08 mL/g. Under these conditions, the extraction yield and protein content were 11.67 and 51.2 %, respectively, which were significantly higher than those obtained by the conventional techniques. Regarding the functionality of protein, extraction technique had significant impacts on the structural and functional properties of proteins. In general, ultrasound assisted extraction had higher solubility, and better foaming and thermal properties and in vitro digestibility but lower emulsifying stability and fluid binding capacity compared to conventional ones. Ultrasound-assisted alkaline extraction has great potential to produce edible olive leaf protein with modified functional properties that can be used for various aims in the food applications.


Assuntos
Olea , Olea/química , Solventes/química , Temperatura , Folhas de Planta/química
12.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37513932

RESUMO

Quercetin, a flavonoid found in fruits and vegetables, has been a part of human diets for centuries. Its numerous health benefits, including antioxidant, antimicrobial, anti-inflammatory, antiviral, and anticancer properties, have been extensively studied. Its strong antioxidant properties enable it to scavenge free radicals, reduce oxidative stress, and protect against cellular damage. Quercetin's anti-inflammatory properties involve inhibiting the production of inflammatory cytokines and enzymes, making it a potential therapeutic agent for various inflammatory conditions. It also exhibits anticancer effects by inhibiting cancer cell proliferation and inducing apoptosis. Finally, quercetin has cardiovascular benefits such as lowering blood pressure, reducing cholesterol levels, and improving endothelial function, making it a promising candidate for preventing and treating cardiovascular diseases. This review provides an overview of the chemical structure, biological activities, and bioavailability of quercetin, as well as the different delivery systems available for quercetin. Incorporating quercetin-rich foods into the diet or taking quercetin supplements may be beneficial for maintaining good health and preventing chronic diseases. As research progresses, the future perspectives of quercetin appear promising, with potential applications in nutraceuticals, pharmaceuticals, and functional foods to promote overall well-being and disease prevention. However, further studies are needed to elucidate its mechanisms of action, optimize its bioavailability, and assess its long-term safety for widespread utilization.

13.
J Control Release ; 355: 327-342, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36731801

RESUMO

The high prevalence of chronic illnesses, including cancer, diabetes, obesity, and cardiovascular diseases has become a growing concern for modern society. Recently, various bioactive compounds (bioactives) are shown to have a diversity of health-beneficial impacts on a wide range of disorders. But the application of these bioactives in food and pharmaceutical formulations is limited due to their poor water solubility and low bioaccessibility/bioavailability. Plant proteins are green alternatives for designing biopolymeric nanoparticles as appropriate nanocarriers thanks to their amphiphilic nature compatible with many bioactives and unique functional properties. Recently, emerging plant proteins (EPPs) are employed as nanocarriers for protection and targeted delivery of bioactives and also improving their stability and shelf-life. EPPs could enhance the solubility, stability, and bioavailability of bioactives by different types of delivery systems. In addition, the use of EPPs in combination with other biopolymers like polysaccharides was found to make a favorable wall material for food bioactives. This review article covers the various sources and importance of EPPs along with different encapsulation techniques of bioactives. Characterization of EPPs for encapsulation is also investigated. Furthermore, the focus is on the application of EPPs as nanocarriers for food bioactives.


Assuntos
Nanopartículas , Proteínas de Plantas , Alimentos , Biopolímeros , Disponibilidade Biológica
14.
Foods ; 12(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37297458

RESUMO

Meeting the United Nation's sustainable development goals for zero hunger becomes increasingly challenging with respect to climate change and political and economic challenges. An effective strategy to alleviate hunger and its severe implications is to produce affordable, nutrient-dense, and sustainable food products. Ancient grains were long-forgotten due to the dominance of modern grains, but recently, they have been rediscovered as highly nutritious, healthy and resilient grains for solving the nutrition demand and food supply chain problems. This review article aims to critically examine the progress in this emerging field and discusses the potential roles of ancient grains in the fight against hunger. We provide a comparative analysis of different ancient grains with their modern varieties in terms of their physicochemical properties, nutritional profiles, health benefits and sustainability. A future perspective is then introduced to highlight the existing challenges of using ancient grains to help eradicate world hunger. This review is expected to guide decision-makers across different disciplines, such as food, nutrition and agronomy, and policymakers in taking sustainable actions against malnutrition and hunger.

15.
Carbohydr Polym ; 314: 120901, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173040

RESUMO

Chitosan (CS), a bio-renewable natural material, has the potential to be utilized as a biopolymer for food packaging films (PFs)/coatings. However, its low solubility in dilute acid solutions and poor antioxidant and antimicrobial activities limit its application in PFs/coatings. To address these restrictions, chemical modification of CS has garnered increasing interest, with graft copolymerization being the most extensively used method. Phenolic acids (PAs) as natural small molecules are used as excellent candidates for CS grafting. This work focuses on the progress of CS grafted PA (CS-g-PA) based films, introducing the chemistry and methods of preparing CS-g-PA, particularly the effects of different PAs grafting on the properties of CS films. In addition, this work discusses the application of different CS-g-PA functionalized PFs/coatings for food preservation. It is concluded that the food preservation capability of CS-based films/coatings can be improved by modifying the properties of CS-based films through PA grafting.


Assuntos
Quitosana , Quitosana/química , Embalagem de Alimentos , Biopolímeros , Solubilidade , Conservação de Alimentos
16.
Int J Biol Macromol ; 253(Pt 6): 127399, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37827415

RESUMO

Pushed by the environmental pollution and health hazards of plastic packaging, the development of biodegradable food packaging films (FPFs) is a necessary and sustainable trend for social development. Most protein molecules have excellent film-forming properties as natural polymer matrices, and the assembled films have excellent barrier properties, but show defects such as low water resistance and poor mechanical properties. In order to improve the performance of protein-based films, transglutaminase (TG) is used as a safe and green cross-linking (CL) agent. This work covers recent developments on TG cross-linked protein-based FPFs, mainly comprising proteins of animal and plant origin, including gelatin, whey protein, zein, soy proteins, bitter vetch protein, etc. The chemical properties and reaction mechanism of TG are briefly introduced, focusing on the effects of TG CL on the physicochemical properties of different protein-based FPFs, including barrier properties, water resistance, mechanical properties and thermal stability. It is concluded that the addition of TG can significantly improve the physical and mechanical properties of protein-based films, mainly improving their water resistance, barrier, mechanical and thermal properties. It is worth noting that the effect of TG on the properties of protein-based films is not only related to the concentration of TG added, but also related to CL temperature and other factors. Moreover, TG can also be used in combination with other strategies to improve the properties of protein-based films.


Assuntos
Embalagem de Alimentos , Transglutaminases , Animais , Transglutaminases/química , Resistência à Tração , Água , Gelatina/química
17.
Food Res Int ; 173(Pt 1): 113221, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37803539

RESUMO

Recently, the increasing demand from consumers for preservative-free or naturally preserved foods has forced the food industry to turn to natural herbal and plant-derived preservatives rather than synthetic preservatives to produce safe foods. Essential oils derived from ginger (Zingiber officinale Roscoe) are widely known for their putative health-promoting bioactivities, and this paper covers their extraction methods, chemical composition, and antibacterial and antioxidant activities. Especially, the paper reviews their potential applications in food preservation, including nanoemulsions, emulsions, solid particle encapsulation, and biodegradable food packaging films/coatings. The conclusion drawn is that ginger essential oil can be used not only for direct food preservation but also encapsulated using various delivery forms such as nanoemulsions, Pickering emulsions, and solid particle encapsulation to improve its release control ability. The film of encapsulated ginger essential oil has been proven to be superior to traditional methods in preserving foods such as bread, meat, fish, and fruit.


Assuntos
Óleos Voláteis , Zingiber officinale , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Zingiber officinale/química , Conservação de Alimentos , Antioxidantes/farmacologia , Antioxidantes/análise , Embalagem de Alimentos
18.
Int J Biol Macromol ; 237: 124149, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36965554

RESUMO

The circular economy considers waste to be a new raw material for the development of value-added products. In this context, agroindustrial lignocellulosic waste represents an outstanding source of new materials and platform chemicals, such as levulinic acid (LA). Herein we study the microwave (MW)-assisted acidic conversion of microcrystalline cellulose (MCC) into LA. The influence of acidic catalysts, inorganic salt addition and ball-milling pre-treatment of MCC on LA yield was assessed. Depolymerization and disruption of cellulose was monitored by FTIR, TGA and SEM, whereas the products formed were analyzed by HPLC and NMR spectroscopy. The parameters that afforded the highest LA yield (48 %, 100 % selectivity) were: ball-milling pre-treatment of MCC for 16 min at 600 rpm, followed by MW-assisted thermochemical treatment for 20 min at 190 °C, aqueous p-toluenesulfonic acid (p-TSA) 0.25 M as catalyst and saturation with KBr. These optimal conditions were further applied to a lignocellulosic feedstock, namely melon rind, to afford a 51 % yield of LA. These results corroborate the suitability of this method to obtain LA from agroindustrial wastes, in line with a circular economy-based approach.


Assuntos
Celulose , Micro-Ondas , Celulose/química , Ácidos Levulínicos/química , Ácidos
19.
Toxins (Basel) ; 15(2)2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36828417

RESUMO

Rice is a widely consumed food worldwide; however, it can be a source of pollutants, such as potentially toxic elements (PTEs), mycotoxins, and pesticides. Sixty rice samples imported from Pakistan (PAK), India (IND), and Thailand (THAI), as well as domestic Iranian (IRN) rice, were collected from Bushehr, Iran, and investigated for the contamination of PTEs, including arsenic (As), lead (Pb), cadmium (Cd), and nickel (Ni); pesticides, including chlorpyrifos, trichlorfon, diazinon, fenitrothion, and chlorothalonil; mycotoxins, such as aflatoxin B1 (AFB1), zearalenone (ZEN), ochratoxin A (OTA), and deoxynivalenol (DON); and molds. Estimated daily intake (EDI) and hazard quotient (HQ) of pollutants and hazard index (HI) and incremental lifetime cancer risk (ILCR) of rice types for the Iranian adult population were calculated. The content of PTEs in Iranian rice was not higher than Iran's national standard limits. In contrast, other types of rice (imported) had at least one PTE above the permissible level. OTA content was below the detection limit, and all other mycotoxins were within the allowable range in all rice types. Thai rice was the only group without pesticides. The HI order of rice types was as follows: HIPAK = 2.1 > HIIND = 1.86 > HIIRN = 1.01 > HITHAI = 0.98. As was the biggest contributor to the HI of Iranian and Thai rice, and diazinon in the HI of Pakistani and Indian rice. The calculation of ILCR confirmed that the concentrations of Ni and Pb in Pakistani and Ni and As in Indian, Thai, and Iranian rice were not acceptable in terms of lifetime carcinogenic health risks.


Assuntos
Arsênio , Poluentes Ambientais , Metais Pesados , Micotoxinas , Praguicidas , Micotoxinas/análise , Praguicidas/análise , Irã (Geográfico) , Diazinon/análise , Chumbo/análise , Arsênio/análise , Medição de Risco , Poluentes Ambientais/análise , Contaminação de Alimentos/análise , Metais Pesados/análise , Monitoramento Ambiental
20.
Food Chem ; 386: 132765, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35509161

RESUMO

Essential oils of industrial hemp (Cannabis sativa L.) by-products (HBEO) were characterized by gas chromatography-mass spectrometry (GC-MS); then, encapsulated in alfalfa protein isolate nanoparticles (API-NPs) as a novel nanocarrier. A desirable retention (45.5-63.4%) of HBEO within API-NPs was confirmed. These nanoparticles exhibited a shrunk and globular shape with a size range of 156.9-325.9 nm as indicated by dynamic light scattering (DLS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Furthermore, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and thermal analyses corroborated that HBEO was successfully encapsulated within API NPs in an amorphous form without specific chemical interaction with the carrier matrix. The antioxidant activity of loaded HBEO into API-NPs was higher than free HBEO implying that encapsulation of HBEO in API-NPs was an efficient strategy for improving its stability and functionality. HBEO-loaded API-NPs is a promising candidate to be used in future foods and supplements for novel applications.


Assuntos
Cannabis , Nanopartículas Metálicas , Nanopartículas , Óleos Voláteis , Antioxidantes , Cannabis/química , Medicago sativa , Nanopartículas Metálicas/química , Nanopartículas/química , Óleos Voláteis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA