Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 29(14): 145203, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29384138

RESUMO

We have examined the conductive properties of carbon nanotube based thin films, which were prepared via dispersion in water by non-covalent functionalization of the nanotubes with xylan, a type of hemicellulose. Measurements of low temperature conductivity, Kelvin probe force microscopy, and high frequency (THz) conductivity elucidated the intra-tube and inter-tube charge transport processes in this material. The measurements show excellent conductive properties of the as prepared thin films, with bulk conductivity up to 2000 S cm-1. The transport results demonstrate that the hemicellulose does not seriously interfere with the inter-tube conductance.

2.
J Phys Condens Matter ; 34(47)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36130609

RESUMO

Individual magnetic transition metal dopants in a solid host usually exhibit relatively small spin excitation energies of a few meV. Using scanning tunneling microscopy and inelastic electron tunneling spectroscopy (IETS) techniques, we have observed a high spin excitation energy around 36 meV for an individual Co substitutional dopant in ultrathin NaCl films. In contrast, the Cr dopant in the NaCl film shows much lower spin excitation energy around 2.5 meV. Electronic multiplet calculations combined with first-principles calculations confirm the spin excitation induced IETS, and quantitatively reveal the out-of-plane magnetic anisotropies for both Co and Cr. They also allow reproducing the experimentally observed redshift in the spin excitations of Co dimers and ascribe it to a charge and geometry redistribution.

3.
Nanotechnology ; 19(30): 305604, 2008 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-21828766

RESUMO

If graphene is ever going to live up to the promises of future nanoelectronic devices, an easy and cheap route for mass production is an essential requirement. A way to extend the capabilities of plasma-enhanced chemical vapour deposition to the synthesis of freestanding few-layer graphene is presented. Micrometre-wide flakes consisting of four to six atomic layers of stacked graphene sheets have been synthesized by controlled recombination of carbon radicals in a microwave plasma. A simple and highly reproducible technique is essential, since the resulting flakes can be synthesized without the need for a catalyst on the surface of any substrate that withstands elevated temperatures up to 700 °C. A thorough structural analysis of the flakes is performed with electron microscopy, x-ray diffraction, Raman spectroscopy and scanning tunnelling microscopy. The resulting graphene flakes are aligned vertically to the substrate surface and grow according to a three-step process, as revealed by the combined analysis of electron microscopy and x-ray photoelectron spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA