Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phycol ; 51(5): 821-37, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26986880

RESUMO

Large-scale seaweed cultivation has been instrumental in globalizing the seaweed industry since the 1950s. The domestication of seaweed cultivars (begun in the 1940s) ended the reliance on natural cycles of raw material availability for some species, with efforts driven by consumer demands that far exceeded the available supplies. Currently, seaweed cultivation is unrivaled in mariculture with 94% of annual seaweed biomass utilized globally being derived from cultivated sources. In the last decade, research has confirmed seaweeds as rich sources of potentially valuable, health-promoting compounds. Most existing seaweed cultivars and current cultivation techniques have been developed for producing commoditized biomass, and may not necessarily be optimized for the production of valuable bioactive compounds. The future of the seaweed industry will include the development of high value markets for functional foods, cosmeceuticals, nutraceuticals, and pharmaceuticals. Entry into these markets will require a level of standardization, efficacy, and traceability that has not previously been demanded of seaweed products. Both internal concentrations and composition of bioactive compounds can fluctuate seasonally, geographically, bathymetrically, and according to genetic variability even within individual species, especially where life history stages can be important. History shows that successful expansion of seaweed products into new markets requires the cultivation of domesticated seaweed cultivars. Demands of an evolving new industry based upon efficacy and standardization will require the selection of improved cultivars, the domestication of new species, and a refinement of existing cultivation techniques to improve quality control and traceability of products.

2.
Mar Drugs ; 13(4): 2250-66, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25874922

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder in the elderly people, currently with no cure. Its mechanisms are not well understood, thus studies targeting cause-directed therapy or prevention are needed. This study uses the transgenic Caenorhabditis elegans PD model. We demonstrated that dietary supplementation of the worms with an extract from the cultivated red seaweed Chondrus crispus decreased the accumulation of α-synulein and protected the worms from the neuronal toxin-, 6-OHDA, induced dopaminergic neurodegeneration. These effects were associated with a corrected slowness of movement. We also showed that the enhancement of oxidative stress tolerance and an up-regulation of the stress response genes, sod-3 and skn-1, may have served as the molecular mechanism for the C. crispus-extract-mediated protection against PD pathology. Altogether, apart from its potential as a functional food, the tested red seaweed, C. crispus, might find promising pharmaceutical applications for the development of potential novel anti-neurodegenerative drugs for humans.


Assuntos
Chondrus/química , Suplementos Nutricionais , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/dietoterapia , Extratos Vegetais/uso terapêutico , Alga Marinha/química , alfa-Sinucleína/antagonistas & inibidores , Animais , Animais Geneticamente Modificados , Aquicultura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/agonistas , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Chondrus/crescimento & desenvolvimento , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Movimento/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Neurotoxinas/antagonistas & inibidores , Neurotoxinas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Extratos Vegetais/administração & dosagem , Proteínas Recombinantes de Fusão/metabolismo , Alga Marinha/crescimento & desenvolvimento , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
3.
Mar Drugs ; 13(10): 6407-24, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26492254

RESUMO

We report here the protective effects of a methanol extract from a cultivated strain of the red seaweed, Chondrus crispus, against ß-amyloid-induced toxicity, in a transgenic Caenorhabditis elegans, expressing human Aß1-42 gene. The methanol extract of C. crispus (CCE), delayed ß-amyloid-induced paralysis, whereas the water extract (CCW) was not effective. The CCE treatment did not affect the transcript abundance of amy1; however, Western blot analysis revealed a significant decrease of Aß species, as compared to untreated worms. The transcript abundance of stress response genes; sod3, hsp16.2 and skn1 increased in CCE-treated worms. Bioassay guided fractionation of the CCE yielded a fraction enriched in monogalactosyl diacylglycerols (MGDG) that significantly delayed the onset of ß-amyloid-induced paralysis. Taken together, these results suggested that the cultivated strain of C. crispus, whilst providing dietary nutritional value, may also have significant protective effects against ß-amyloid-induced toxicity in C. elegans, partly through reduced ß-amyloid species, up-regulation of stress induced genes and reduced accumulation of reactive oxygen species (ROS).


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Chondrus/química , Paralisia/prevenção & controle , Extratos Vegetais/farmacologia , Peptídeos beta-Amiloides/toxicidade , Animais , Animais Geneticamente Modificados , Western Blotting , Humanos , Metanol/química , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética , Regulação para Cima/efeitos dos fármacos
4.
Mar Drugs ; 13(1): 558-80, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25603348

RESUMO

Codium fragile and Chondrus crispus are, respectively, green and red seaweeds which are abundant along the North Atlantic coasts. We investigated the chemical composition and antiviral activity of enzymatic extracts of C. fragile (CF) and C. crispus (CC). On a dry weight basis, CF consisted of 11% protein, 31% neutral sugars, 0.8% sulfate, 0.6% uronic acids, and 49% ash, while CC contained 27% protein, 28% neutral sugars, 17% sulfate, 1.8% uronic acids, and 25% ash. Enzyme-assisted hydrolysis improved the extraction efficiency of bioactive materials. Commercial proteases and carbohydrases significantly improved (p ≤ 0.001) biomass yield (40%-70% dry matter) as compared to aqueous extraction (20%-25% dry matter). Moreover, enzymatic hydrolysis enhanced the recovery of protein, neutral sugars, uronic acids, and sulfates. The enzymatic hydrolysates exhibited significant activity against Herpes simplex virus (HSV-1) with EC50 of 77.6-126.8 µg/mL for CC and 36.5-41.3 µg/mL for CF, at a multiplicity of infection (MOI) of 0.001 ID50/cells without cytotoxity (1-200 µg/mL). The extracts obtained from proteases (P1) and carbohydrases (C3) were also effective at higher virus MOI of 0.01 ID50/cells without cytotoxity. Taken together, these results indicate the potential application of enzymatic hydrolysates of C. fragile and C. crispus in functional food and antiviral drug discovery.


Assuntos
Antivirais/isolamento & purificação , Clorófitas/química , Chondrus/química , Herpesvirus Humano 1/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Proteínas de Algas/isolamento & purificação , Proteínas de Algas/farmacologia , Antivirais/farmacologia , Hidrólise , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia
5.
BMC Complement Altern Med ; 15: 279, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26271359

RESUMO

BACKGROUND: Gastrointestinal microbial communities are diverse and are composed of both beneficial and pathogenic groups. Prebiotics, such as digestion-resistant fibers, influence the composition of gut microbiota, and can contribute to the improvement of host health. The red seaweed Chondrus crispus is rich in dietary fiber and oligosaccharides, however its prebiotic potential has not been studied to date. METHODS: Prebiotic effects were investigated with weaning rats fed a cultivated C. crispus-supplemented diet. Comparison standards included a fructo-oligo-saccharide (FOS) diet and a basal diet. The colonic microbiome was profiled with a 16S rRNA sequencing-based Phylochip array. Concentrations of short chain fatty acids (SCFAs) in the feacal samples were determined by gas chromatography with a flame ionization detector (GC-FID) analysis. Immunoglobulin levels in the blood plasma were analyzed with an enzyme-linked immunosorbent assay (ELISA). Histo-morphological parameters of the proximal colon tissue were characterized by hematoxylin and eosin (H&E) staining. RESULTS: Phylochip array analysis indicated differing microbiome composition among the diet-supplemented and the control groups, with the C. crispus group (2.5% supplementation) showing larger separation from the control than other treatment groups. In the 2.5% C. crispus group, the population of beneficial bacteria such as Bifidobacterium breve increased (4.9-fold, p=0.001), and the abundance of pathogenic species such as Clostridium septicum and Streptococcus pneumonia decreased. Higher concentrations of short chain fatty acids (i.e., gut microbial metabolites), including acetic, propionic and butyric acids, were found in faecal samples of the C. crispus-fed rats. Furthermore, both C. crispus and FOS supplemented rats showed significant improvements in proximal colon histo-morphology. Higher faecal moisture was noted in the 2.5% C. crispus group, and elevated plasma immunoglobulin (IgA and IgG) levels were observed in the 0.5% C. crispus group, as compared to the basal feed group. CONCLUSIONS: The results suggest multiple prebiotic effects, such as influencing the composition of gut microbial communities, improvement of gut health and immune modulation in rats supplemented with cultivated C. crispus.


Assuntos
Bactérias/efeitos dos fármacos , Chondrus/química , Colo/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , Imunoglobulinas/sangue , Oligossacarídeos/farmacologia , Prebióticos , Animais , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Colo/metabolismo , Colo/microbiologia , Fibras na Dieta/farmacologia , Suplementos Nutricionais , Fezes/química , Microbioma Gastrointestinal/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Masculino , RNA Ribossômico 16S/genética , Ratos Sprague-Dawley , Alga Marinha
6.
Poult Sci ; 93(12): 2991-3001, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25352682

RESUMO

The aim of this study was to evaluate the effect of the inclusion of red seaweed supplementation to standard poultry diets on production performance, egg quality, intestinal histology, and cecal short-chain fatty acids in Lohmann Brown Classic laying hens. A total of 160 birds were randomly assigned to 8 treatment groups. Control hens were fed a basal layer diet; positive control hens were fed a diet containing 2% inulin; and 6 treatment groups were fed a diet containing one of the following; 0.5, 1, or 2% Chondrus crispus (CC0.5, CC1, and CC2, respectively) and one of the same 3 levels of Sarcodiotheca gaudichaudii (SG0.5, SG1, and SG2, respectively). Dietary supplementation had no significant effect on the feed intake, BW, egg production, fecal moisture content, and blood serum profile of the birds. The feed conversion ratio per gram of egg was significantly more efficient (P = 0.001) for CC2 and SG2 treatments. Moreover, SG1 supplementation increased egg yolk weight (P = 0.0035) and birds with CC1 supplementation had higher egg weight (P = 0.0006). The SG2 and CC2 groups had greater (P < 0.05) villus height and villus surface area compared with the control birds. Seaweed supplementation increased the abundance of beneficial bacteria [e.g., Bifidobacterium longum (4- to 14-fold), Streptococcus salivarius (4- to 15-fold)] and importantly reduced the prevalence of Clostridium perfringens in the gut of the chicken. Additionally, the concentrations of short-chain fatty acids, including acetic acid, propionic acid, n-butyric acid, and i-butyric acid, were significantly higher (P < 0.05) in CC and SG treatments than in the control. In conclusion, dietary supplementation using red seaweed inclusions can act as a potential prebiotic to improve performance, egg quality, and overall gut health in layer hens.


Assuntos
Galinhas/fisiologia , Chondrus , Suplementos Nutricionais , Rodófitas/química , Alga Marinha/química , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Galinhas/sangue , Dieta/veterinária , Ovos/normas , Oviposição/efeitos dos fármacos , Oviposição/fisiologia
7.
Appl Environ Microbiol ; 79(23): 7343-50, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24056462

RESUMO

Marine macroalgae are rich in bioactive compounds that can, when consumed, impart beneficial effects on animal and human health. The red seaweed Chondrus crispus has been reported to have a wide range of health-promoting activities, such as antitumor and antiviral activities. Using a Caenorhabditis elegans infection model, we show that C. crispus water extract (CCWE) enhances host immunity and suppresses the expression of quorum sensing (QS) and the virulence factors of Pseudomonas aeruginosa (strain PA14). Supplementation of nematode growth medium with CCWE induced the expression of C. elegans innate immune genes, such as irg-1, irg-2, F49F1.6, hsf-1, K05D8.5, F56D6.2, C29F3.7, F28D1.3, F38A1.5 ZK6.7, lys-1, spp-1, and abf-1, by more than 2-fold, while T20G5.7 was not affected. Additionally, CCWE suppressed the expression of PA14 QS genes and virulence factors, although it did not affect the growth of the bacteria. These effects correlated with a 28% reduction in the PA14-inflicted killing of C. elegans. Kappa-carrageenan (K-CGN), a major component of CCWE, was shown to play an important role in the enhancement of host immunity. Using C. elegans mutants, we identified that pmk-1, daf-2/daf-16, and skn-1 are essential in the K-CGN-induced host immune response. In view of the conservation of innate immune pathways between C. elegans and humans, the results of this study suggest that water-soluble components of C. crispus may also play a health-promoting role in higher animals and humans.


Assuntos
Antibacterianos/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/microbiologia , Chondrus/química , Fatores Imunológicos/metabolismo , Extratos Vegetais/metabolismo , Pseudomonas aeruginosa/imunologia , Animais , Antibacterianos/isolamento & purificação , Caenorhabditis elegans/imunologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição Forkhead , Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/isolamento & purificação , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Extratos Vegetais/isolamento & purificação , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Receptor de Insulina/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Virulência/biossíntese
8.
Front Microbiol ; 8: 567, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28443073

RESUMO

Salmonella Enteritidis is vertically transmitted to eggs from laying hens through infected ovaries and oviducts. S. Enteritidis can also penetrate the eggshell from contaminated feces. Reducing S. Enteritidis in laying hens is vital to provide safer eggs and minimize the spread of salmonellosis to humans. Antibiotics have been widely used to control bacterial diseases in broilers and laying hens. However, there is a major concern that the use of antibiotics leads to the development of antibiotic resistance and adverse effects on microbiota of the treated birds. Thus, there is an interest in developing alternatives to antibiotics, such as dietary prebiotics. In the present study, feed supplemented with the red seaweeds: Chondrus crispus (CC) or Sarcodiotheca gaudichaudii (SG), was offered to laying hens late in production to control S. Enteritidis. Diets contained one of the following; 2% or 4% Chondrus crispus (CC2, and CC4, respectively) or Sarcodiotheca gaudichaudii (SG2 and SG4, respectively). Chlortetracycline was used in the positive control diet. During week-4, 48 birds were orally challenged with 2 × 109 CFU/mL of S. Enteritidis. Eggs and fecal samples were collected 1, 3, 5, and 7 days' post inoculation. Birds were euthanized and organs (ceca, ovary, liver, and spleen) were sampled and analyzed for the presence of S. Enteritidis, 7 days' post inoculation. Results showed that seaweed reduced the negative effect on body weight and egg production in S. Enteritidis-challenged laying hens. Analysis of fecal samples showed that the antibiotic (CTC) reduced S. Enteritidis in the intestinal tract and fecal samples, 3 days' post inoculation. Fecal samples from Chlortetracycline and CC4 supplemented birds tested negative for S. Enteritidis on days 5 and 7 post inoculation (lowest detection limit = 10-1). S. Enteritidis colonization in the ceca was also significantly reduced in birds fed CC (4%) and Chlortetracycline. Blood serum profiles revealed that there were no significant differences in serum aspartate aminotransferase (AST) and sodium. However, the level of serum immunoglobulin (IgA) was higher in the CC4 treatment. The relative abundance of Lactobacillus acidophilus was significantly higher in CC4 while, the abundance of the pathogenic bacteria, Clostridium perfringens and Salmonella Enteritidis were reduced compared to control. Results indicate that feed supplemented with 4% CC is effective in providing protection against Salmonella Enteritidis colonization in laying hens.

9.
Front Microbiol ; 7: 421, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27065981

RESUMO

Red seaweeds are a rich source of unique bioactive compounds and secondary metabolites that are known to improve human and animal health. S. Enteritidis is a broad range host pathogen, which contaminates chicken and poultry products that end into the human food chain. Worldwide, Salmonella outbreaks have become an important economic and public health concern. Moreover, the development of resistance in Salmonella serovars toward multiple drugs highlights the need for alternative control strategies. This study evaluated the antimicrobial property of red seaweeds extracts against Salmonella Enteritidis using the Caenorhabditis elegans infection model. Six red seaweed species were tested for their antimicrobial activity against S. Enteritidis and two, Sarcodiotheca gaudichaudii (SG) and Chondrus crispus (CC), were found to exhibit such properties. Spread plate assay revealed that SG and CC (1%, w/v) significantly reduced the growth of S. Enteritidis. Seaweed water extracts (SWE) of SG and CC, at concentrations from 0.4 to 2 mg/ml, significantly reduced the growth of S. Enteritidis (log CFU 4.5-5.3 and log 5.7-6.0, respectively). However, methanolic extracts of CC and SG did not affect the growth of S. Enteritidis. Addition of SWE (0.2 mg/ml, CC and SG) significantly decreased biofilm formation and reduced the motility of S. Enteritidis. Quantitative real-time PCR analyses showed that SWE (CC and SG) suppressed the expression of quorum sensing gene sdiA and of Salmonella Pathogenesis Island-1 (SPI-1) associated genes sipA and invF, indicating that SWE might reduce the invasion of S. Enteritidis in the host by attenuating virulence factors. Furthermore, CC and SG water extracts significantly improved the survival of infected C. elegans by impairing the ability of S. Enteritidis to colonize the digestive tract of the nematode and by enhancing the expression of C. elegans immune responsive genes. As the innate immune response pathways of C. elegans and mammals show a high degree of conservation, these results suggest that these SWE may also impart beneficial effects on animal and human health.

10.
Phytochemistry ; 101: 101-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24569177

RESUMO

The EtOAc soluble fraction of a MeOH/CHCl3 extract of Palmaria palmata showed strong nitric oxide (NO) inhibitory activity against lipopolysaccharide (LPS)-induced NO production in murine RAW264.7 cells. NO inhibition-guided isolation led to identification of three new polar lipids including a sulfoquinovosyl diacylglycerol (SQDG) (2S)-1-O-eicosapentaenoyl-2-O-myristoyl-3-O-(6-sulfo-α-D-quinovopyranosyl)-glycerol (1) and two phosphatidylglycerols, 1-O-eicosapentaenoyl-2-O-trans-3-hexadecenoyl-3-phospho-(1'-glycerol)-glycerol (3) and 1-O-eicosapentaenoyl-2-O-palmitoyl-3-phospho-(1'-glycerol)-glycerol (4) from the EtOAc fraction. Seven known lipids were also isolated including a SQDG (2), a phospholipid (5) and five galactolipids (6-10). Structures of the isolated lipids were elucidated by spectral analyses. The isolated SQDGs, phosphatidylglycerols and phospholipid possessed strong and dose-dependent NO inhibitory activity compared to N(G)-methyl-L-arginine acetate salt (L-NMMA), a well-known NO inhibitor used as a positive control. Further study suggested that these polar lipids suppressed NO production through down-regulation of inducible nitric oxide synthase (iNOS).


Assuntos
Glicolipídeos/farmacologia , Macrófagos/efeitos dos fármacos , Microalgas/química , Óxido Nítrico/antagonistas & inibidores , Fosfatidilgliceróis/farmacologia , Rodófitas/química , Animais , Técnicas de Cultura de Células , Linhagem Celular , Glicolipídeos/isolamento & purificação , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Estrutura Molecular , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Fosfatidilgliceróis/isolamento & purificação , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA