Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Small ; 20(23): e2305958, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38169107

RESUMO

Simultaneous electroreduction of CO2 and H2O to syngas can provide a sustainable feed for established processes used to synthesize carbon-based chemicals. The synthesis of MOx/M-N-Cs (M = Ni, Fe) electrocatalysts reported via one-step pyrolysis that shows increased performance during syngas electrosynthesis at high current densities with adaptable H2/CO ratios, e.g., for the Fischer-Tropsch process. When embedded in gas diffusion electrodes (GDEs) with optimized hydrophobicity, the NiOx/Ni-N-C catalyst produces syngas (H2/CO = 0.67) at -200 mA cm-2 while for the FeOx/Fe-N-C syngas production occurs at ≈-150 mA cm-2. By tuning the electrocatalyst's microenvironment, stable operation for >3 h at -200 mA cm-2 is achieved with the NiOx/Ni-N-C GDE. Post-electrolysis characterization revealed that the restructuring of the catalyst via reduction of NiOx to metallic Ni NPs still enables stable operation of the electrode at -200 mA cm-2, when embedded in an optimized microenvironment. The ionomer and additives used in the catalyst layer are important for the observed stable operation. Operando Raman measurements confirm the presence of NiOx during CO formation and indicate weak adsorption of CO on the catalyst surface.

2.
Angew Chem Int Ed Engl ; 62(28): e202305982, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37178313

RESUMO

The role of ß-CoOOH crystallographic orientations in catalytic activity for the oxygen evolution reaction (OER) remains elusive. We combine correlative electron backscatter diffraction/scanning electrochemical cell microscopy with X-ray photoelectron spectroscopy, transmission electron microscopy, and atom probe tomography to establish the structure-activity relationships of various faceted ß-CoOOH formed on a Co microelectrode under OER conditions. We reveal that ≈6 nm ß-CoOOH(01 1 ‾ ${\bar{1}}$ 0), grown on [ 1 ‾ 2 1 ‾ ${\bar{1}2\bar{1}}$ 0]-oriented Co, exhibits higher OER activity than ≈3 nm ß-CoOOH(10 1 ‾ ${\bar{1}}$ 3) or ≈6 nm ß-CoOOH(0006) formed on [02 2 ‾ 1 ] ${\bar{2}1]}$ - and [0001]-oriented Co, respectively. This arises from higher amounts of incorporated hydroxyl ions and more easily reducible CoIII -O sites present in ß-CoOOH(01 1 ‾ ${\bar{1}}$ 0) than those in the latter two oxyhydroxide facets. Our correlative multimodal approach shows great promise in linking local activity with atomic-scale details of structure, thickness and composition of active species, which opens opportunities to design pre-catalysts with preferred defects that promote the formation of the most active OER species.

3.
Chemistry ; 27(68): 17038-17048, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34596277

RESUMO

By using the crystalline precursor decomposition approach and direct co-precipitation the composition and mesostructure of cobalt-based spinels can be controlled. A systematic substitution of cobalt with redox-active iron and redox-inactive magnesium and aluminum in a cobalt spinel with anisotropic particle morphology with a preferred 111 surface termination is presented, resulting in a substitution series including Co3 O4 , MgCo2 O4 , Co2 FeO4 , Co2 AlO4 and CoFe2 O4 . The role of redox pairs in the spinels is investigated in chemical water oxidation by using ceric ammonium nitrate (CAN test), electrochemical oxygen evolution reaction (OER) and H2 O2 decomposition. Studying the effect of dominant surface termination, isotropic Co3 O4 and CoFe2 O4 catalysts with more or less spherical particles are compared to their anisotropic analogues. For CAN-test and OER, Co3+ plays the major role for high activity. In H2 O2 decomposition, Co2+ reveals itself to be of major importance. Redox active cations in the structure enhance the catalytic activity in all reactions. A benefit of a predominant 111 surface termination depends on the cobalt oxidation state in the as-prepared catalysts and the investigated reaction.

4.
Chemistry ; 27(68): 17127-17144, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34633707

RESUMO

Perovskites are interesting oxidation catalysts due to their chemical flexibility enabling the tuning of several properties. In this work, we synthesized LaFe1-x Cox O3 catalysts by co-precipitation and thermal decomposition, characterized them thoroughly and studied their 2-propanol oxidation activity under dry and wet conditions to bridge the knowledge gap between gas and liquid phase reactions. Transient tests showed a highly active, unstable low-temperature (LT) reaction channel in conversion profiles and a stable, less-active high-temperature (HT) channel. Cobalt incorporation had a positive effect on the activity. The effect of water was negative on the LT channel, whereas the HT channel activity was boosted for x>0.15. The boost may originate from a slower deactivation rate of the Co3+ sites under wet conditions and a higher amount of hydroxide species on the surface comparing wet to dry feeds. Water addition resulted in a slower deactivation for Co-rich catalysts and higher activity in the HT channel state.

5.
Angew Chem Int Ed Engl ; 60(39): 21396-21403, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34343398

RESUMO

The effect of surface orientations on the formation of iridium oxide species during the oxygen evolution reaction (OER) remains yet unknown. Herein, we use a needle-shaped iridium atom probe specimen as a nanosized working electrode to ascertain the role of the surface orientations in the formation of oxide species during OER. At the beginning of electrolysis, the top 2-3 nm of (024), (026), (113), and (115) planes are covered by IrO-OH, which activates all surfaces towards OER. A thick subsurface oxide layer consisting of sub-stoichiometric Ir-O species is formed on the open (024) planes as OER proceeds. Such metastable Ir-O species are thought to provide an additional contribution to the OER activity. Overall, this study sheds light on the importance of the morphological effects of iridium electrocatalysts for OER. It also provides an innovative approach that can directly reveal surface species on electrocatalysts at atomic scale.

6.
Chemistry ; 25(47): 11048-11057, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31140211

RESUMO

Porous particle superstructures of about 15 nm diameter, consisting of ultrasmall nanoparticles of iridium and iridium dioxide, are prepared through the reduction of sodium hexachloridoiridate(+IV) with sodium citrate/sodium borohydride in water. The water-dispersible porous particles contain about 20 wt % poly(N-vinylpyrrolidone) (PVP), which was added for colloidal stabilization. High-resolution transmission electron microscopy confirms the presence of both iridium and iridium dioxide primary particles (1-2 nm) in each porous superstructure. The internal porosity (≈58 vol%) is demonstrated by electron tomography. In situ transmission electron microscopy up to 1000 °C under oxygen, nitrogen, argon/hydrogen (all at 1 bar), and vacuum shows that the porous particles undergo sintering and subsequent compaction upon heating, a process that starts at around 250 °C and is completed at around 800 °C. Finally, well-crystalline iridium dioxide is obtained under all four environments. The catalytic activity of the as-prepared porous superstructures in electrochemical water splitting (oxygen evolution reaction; OER) is reduced considerably upon heating owing to sintering of the pores and loss of internal surface area.

7.
Langmuir ; 35(3): 767-778, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30576151

RESUMO

Ultrasmall gold nanoparticles with a diameter of 1.8 nm were synthesized by reduction of tetrachloroauric acid with sodium borohydride in the presence of l-cysteine, with natural isotope abundance as well as 13C-labeled and 15N-labeled. The particle diameter was determined by high-resolution transmission electron microscopy and differential centrifugal sedimentation. X-ray photoelectron spectroscopy confirmed the presence of metallic gold with only a few percent of oxidized Au(+I) species. The surface structure and the coordination environment of the cysteine ligands on the ultrasmall gold nanoparticles were studied by a variety of homo- and heteronuclear NMR spectroscopic techniques including 1H-13C-heteronuclear single-quantum coherence and 13C-13C-INADEQUATE. Further information on the binding situation (including the absence of residual or detached l-cysteine in the solution) and on the nanoparticle diameter (indicating the well-dispersed state) was obtained by diffusion-ordered spectroscopy (1H-, 13C-, and 1H-13C-DOSY). Three coordination environments of l-cysteine on the gold surface were identified that were ascribed to different crystallographic sites, supported by geometric considerations of the nanoparticle ultrastructure. The particle size data and the NMR-spectroscopic analysis gave a particle composition of about Au174(cysteine)67.

8.
Phys Chem Chem Phys ; 21(43): 24239, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31657401

RESUMO

Correction for 'Determining the role of redox-active materials during laser-induced water decomposition' by Mark-Robert Kalus et al., Phys. Chem. Chem. Phys., 2019, 21, 18636-18651.

9.
Phys Chem Chem Phys ; 21(34): 18636-18651, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31414685

RESUMO

Laser ablation in liquids (LAL) drives the decomposition of the liquid inducing the formation of a large number of different redox equivalents and gases. This not only leads to shielding effects and a decrease of the nanoparticle (NP) productivity but also can directly affect the NP properties such as the oxidation degree. In this study, we demonstrate that liquid decomposition during laser ablation in water is triggered by the redox activity of the 7 different bulk materials used; Au, Pt, Ag, Cu, Fe, Ti and Al, as well as by the reactivity of water with the plasma. Laser ablation of less-noble metals like aluminum leads to a massive gas evolution up to 390 cm3 per hour with molar hydrogen to oxygen ratios of 17.1. For more noble metals such as gold and platinum, water splitting induced by LAL is the dominant feature leading to gas volume formation rates of 10 up to 30 cm3 per hour and molar hydrogen to oxygen ratios of 1.2. We quantify the material-dependent ablation rate, shielding effects as well as the amount of hydrogen peroxide produced, directly affecting the yield and oxidation of the nanoparticles on the long-time scale.

10.
Langmuir ; 32(35): 8793-802, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27489980

RESUMO

Pulsed laser ablation in liquid (PLAL) has proven its usefulness as a nanoparticle (NP) synthesis method alternative to traditional chemical reduction methods, where the absence of any molecular ligands or residual reactants makes laser-generated nanoparticles ideal reference materials for charge-transfer experiments. We synthesized additive-free platinum nanoparticles by PLAL and in-situ characterized their interaction with H2O, sodium phosphate buffer, and sodium citrate as well as a TiO2 support by X-ray absorption fine structure (XAFS), i.e., X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). Differences in the white-line intensity among the colloidal particles in the three liquids indicate that the respective NP-solvent interaction varies in strength. The ions added ex situ diffuse through the particles' electric double layer and interact electrostatically with the Stern plane. Consequently, these ions weaken the interaction of the functional OH groups that are bound to the partially oxidized platinum surfaces and cause their partial reduction. Comparing XAFS spectra of laser-generated Pt NPs in citrate with wet-chemically synthesized ones (both ligand-covered) indicates different types of Pt-O bonds: a Pt(IV)O2 type in the case of wet-chemical NPs and a Pt(II)O type in the case of laser-generated NPs. A comparison of unsupported laser-generated platinum NPs in H2O with TiO2-supported ones shows no white-line intensity differences and also an identical number of Pt-O bonds in both cases. This suggests that in the deposition process at least part of the double-layer coating stays intact and that the ligand-free Pt particle properties are preserved in the TiO2-supported Pt particles, relevant for heterogeneous catalysis.

11.
Inorg Chem ; 55(15): 7542-9, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27391769

RESUMO

Nearly phase-pure bismuth ferrite particles were formed by thermolysis of the single-source precursor [Cp(CO)2FeBi(OAc)2] (1) in octadecene at 245 °C, followed by subsequent calcination at 600 °C for 3 h. In contrast, the slightly modified compound [Cp(CO)2FeBi(O2C(t)Bu)2] (2) yielded only mixtures of different bismuth oxide phases, revealing the distinctive influence of molecular design in material synthesis. The chemical composition, morphology, and crystallinity of the resulting materials were investigated by X-ray diffraction, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. In addition, the optical properties were investigated by Fourier transform infrared and UV-vis spectroscopies, showing a strong band gap absorption in the visible range at 590 nm (2.2 eV). The magnetic behavior was probed by vibrating-sample and superconducting quantum interference device magnetometry, as well as (57)Fe Mössbauer spectroscopy.

12.
J Chem Phys ; 143(24): 244703, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26723698

RESUMO

The dissociative adsorption of oxygen molecules on magnesium surfaces represents a non-adiabatic reaction exhibiting exoelectron emission, chemicurrent generation, and weak chemiluminescence. Using thin film Mg/Ag/p-Si(111) Schottky diodes with 1 nm Mg on a 10-60 nm thick Ag layer as 2π-photodetectors, the chemiluminescence is internally detected with a much larger efficiency than external methods. The chemically induced photoyield shows a maximum for a Ag film thickness of 45 nm. The enhancement is explained by surface plasmon coupled chemiluminescence, i.e., surface plasmon polaritons are effectively excited in the Ag layer by the oxidation reaction and decay radiatively leading to the observed photocurrent. Model calculations of the maximum absorption in attenuated total reflection geometry support the interpretation. The study demonstrates the extreme sensitivity and the practical usage of internal detection schemes for investigating surface chemiluminescence.

13.
Langmuir ; 30(15): 4213-22, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24720469

RESUMO

Specific ion effects ranking in the Hofmeister sequence are ubiquitous in biochemical, industrial, and atmospheric processes. In this experimental study specific ion effects inexplicable by the classical DLVO theory have been investigated at curved water-metal interfaces of gold nanoparticles synthesized by a laser ablation process in liquid in the absence of any organic stabilizers. Notably, ion-specific differences in colloidal stability occurred in the Hückel regime at extraordinarily low salinities below 50 µM, and indications of a direct influence of ion-specific effects on the nanoparticle formation process are found. UV-vis, zeta potential, and XPS measurements help to elucidate coagulation properties, electrokinetic potential, and the oxidation state of pristine gold nanoparticles. The results clearly demonstrate that stabilization of ligand-free gold nanoparticles scales proportionally with polarizability and antiproportionally with hydration of anions located at defined positions in a direct Hofmeister sequence of anions. These specific ion effects might be due to the adsorption of chaotropic anions (Br(-), SCN(-), or I(-)) at the gold/water interface, leading to repulsive interactions between the partially oxidized gold particles during the nanoparticle formation process. On the other hand, kosmotropic anions (F(-) or SO4(2-)) seem to destabilize the gold colloid, whereas Cl(-) and NO3(-) give rise to an intermediate stability. Quantification of surface charge density indicated that particle stabilization is dominated by ion adsorption and not by surface oxidation. Fundamental insights into specific ion effects on ligand-free aqueous gold nanoparticles beyond purely electrostatic interactions are of paramount importance in biomedical or catalytic applications, since colloidal stability appears to depend greatly on the type of salt rather than on the amount.


Assuntos
Ânions/química , Ouro/química , Nanopartículas Metálicas/química , Tensoativos/química , Adsorção
14.
Nanomaterials (Basel) ; 14(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38251105

RESUMO

Oxometalates of vanadium(V), chromium(VI), and manganese(VII) have negative impacts on water resources due to their toxicity. To remove them, the kinetics of 0.04 mM oxometalates in natural and synthetic water were studied using graphene nanoplatelets (GNP). The GNP were dispersible in water and formed aggregates >15 µm that could be easily separated. Within 30 min, the GNP were covered with ~0.4 mg/g vanadium and ~1.0 mg/g chromium as Cr(OH)3. The reaction of 0.04 mM permanganate with 50 mg of GNP resulted in a coverage of 10 mg/g in 5 min, while the maximum value was 300 mg/g manganese as Mn2O3/MnO. TEM showed a random metal distribution on the surfaces; no clusters or nanoparticles were detected. The rate of disappearance in aerated water followed a pseudo second-order adsorption kinetics (PSO) for V(V), a pseudo second-order reaction for Cr(VI), and a pseudo first-order reaction for Mn(VII). For Cr(VI) and Mn(VII), the rate constants were found to depend on the GNP mass. Oxygen sorption occurred with PSO kinetics as a parallel slow process upon contact of GNP with air-saturated water. For thermally regenerated GNP, the rate constant decreased for V(V) but increased for Cr(VI), while no effect was observed for Mn(VII). GNP capacity was enhanced through regeneration for V(V) and Cr(VI); no effect was observed for Mn(VII). The reactions are well-suited for use in water purification processes and the reaction products, GNP, decorated with single metal atoms, are of great interest for the construction of sensors, electronic devices, and for application in single-atom catalysis (SAC).

15.
J Chem Phys ; 138(3): 034710, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23343296

RESUMO

The interaction of chlorine with potassium surfaces is a prototype reaction with a strong non-adiabatic energy transfer leading to exoemission and chemiluminescence. Thin film K/Ag/p-Si(111) Schottky diodes with 8 nm potassium on a 5-200 nm thick Ag layer are used as 2π-photodetectors for the chemiluminescence during chlorination of the K film at 110 K. The observed photocurrent shows a sharp maximum for small exposures and decreases gradually with the increasing chloride layer. The time dependence can be explained by the reaction kinetics, which is governed initially by second-order adsorption processes followed by an electric field-assisted diffusion. The detector current corresponds to a yield of a few percent of elementary charge per reacting chlorine molecule and is orders of magnitude larger than for external detection. The photoyield can be enhanced by increasing the Ag film thickness. For Ag films of 30 and 50 nm, the yield exhibits a maximum indicating surface plasmon coupled chemiluminescence. Surface plasmon polaritons in the Ag layer are excited by the reaction and decay radiatively into Si leading to the observed currents. A model calculation for the reverse process in attenuated total reflection is applied to explain the observed current yield maxima.

16.
RSC Adv ; 13(33): 22777-22788, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37520102

RESUMO

Nitrogen-containing porous carbons prepared by the pyrolysis of adequate biopolymer-based precursors have shown potential in several electrochemical energy-related applications. However, it is still of crucial interest to find the optimal precursors and process conditions which would allow the preparation of carbons with adequate porous structure as well as suitable nitrogen content and distribution of functional groups. In the present work we suggested a straightforward approach to prepare N-doped porous carbons by direct pyrolysis under nitrogen of chitosan : coffee blends of different compositions and using KOH for simultaneous surface activation. The synthetized carbon materials were tested for the electrochemical oxygen reduction to hydrogen peroxide (H2O2). A higher fraction of chitosan in the precursor led to a decrease in meso- and nano-porosity of the formed porous carbons, while their activity towards H2O2 generation increased. The nitrogen species derived from chitosan seem to play a very important role. Out of the synthesized catalysts the one with the largest content of pyridinic nitrogen sites exhibited the highest faradaic efficiency. The faradaic efficiencies and current densities of the synthesized materials were comparable with the ones of other commercially available carbons obtained from less renewable precursors.

17.
Adv Mater ; 35(9): e2207635, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36542651

RESUMO

Polyelemental material systems, specifically high-entropy alloys, promise unprecedented properties. Due to almost unlimited combinatorial possibilities, their exploration and exploitation is hard. This challenge is addressed by co-sputtering combined with shadow masking to produce a multitude of microscale combinatorial libraries in one deposition process. These thin-film composition spreads on the microscale cover unprecedented compositional ranges of high-entropy alloy systems and enable high-throughput characterization of thousands of compositions for electrocatalytic energy conversion reactions using nanoscale scanning electrochemical cell microscopy. The exemplary exploration of the composition space of two high-entropy alloy systems provides electrocatalytic activity maps for hydrogen evolution and oxygen evolution as well as oxygen reduction reactions. Activity optima in the system Ru-Rh-Pd-Ir-Pt are identified, and active noble-metal lean compositions in the system Co-Ni-Mo-Pd-Pt are discovered. This illustrates that the proposed microlibraries are a holistic discovery platform to master the multidimensionality challenge of polyelemental systems.

18.
Nat Commun ; 13(1): 179, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013310

RESUMO

The three-dimensional (3D) distribution of individual atoms on the surface of catalyst nanoparticles plays a vital role in their activity and stability. Optimising the performance of electrocatalysts requires atomic-scale information, but it is difficult to obtain. Here, we use atom probe tomography to elucidate the 3D structure of 10 nm sized Co2FeO4 and CoFe2O4 nanoparticles during oxygen evolution reaction (OER). We reveal nanoscale spinodal decomposition in pristine Co2FeO4. The interfaces of Co-rich and Fe-rich nanodomains of Co2FeO4 become trapping sites for hydroxyl groups, contributing to a higher OER activity compared to that of CoFe2O4. However, the activity of Co2FeO4 drops considerably due to concurrent irreversible transformation towards CoIVO2 and pronounced Fe dissolution. In contrast, there is negligible elemental redistribution for CoFe2O4 after OER, except for surface structural transformation towards (FeIII, CoIII)2O3. Overall, our study provides a unique 3D compositional distribution of mixed Co-Fe spinel oxides, which gives atomic-scale insights into active sites and the deactivation of electrocatalysts during OER.

19.
ACS Omega ; 6(24): 15929-15939, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34179637

RESUMO

Two-dimensional semiconductors such as MoS2 are promising for future electrical devices. The interface to metals is a crucial and critical aspect for these devices because undesirably high resistances due to Fermi level pinning are present, resulting in unwanted energy losses. To date, experimental information on such junctions has been obtained mainly indirectly by evaluating transistor characteristics. The fact that the metal-semiconductor interface is typically embedded, further complicates the investigation of the underlying physical mechanisms at the interface. Here, we present a method to provide access to a realistic metal-semiconductor interface by large-area exfoliation of single-layer MoS2 on clean polycrystalline gold surfaces. This approach allows us to measure the relative charge neutrality level at the MoS2-gold interface and its spatial variation almost directly using Kelvin probe force microscopy even under ambient conditions. By bringing together hitherto unconnected findings about the MoS2-gold interface, we can explain the anomalous Raman signature of MoS2 in contact to metals [ACS Nano. 7, 2013, 11350] which has been the subject of intense recent discussions. In detail, we identify the unusual Raman mode as the A1g mode with a reduced Raman shift (397 cm-1) due to the weakening of the Mo-S bond. Combined with our X-ray photoelectron spectroscopy data and the measured charge neutrality level, this is in good agreement with a previously predicted mechanism for Fermi level pinning at the MoS2-gold interface [Nano Lett. 14, 2014, 1714]. As a consequence, the strength of the MoS2-gold contact can be determined from the intensity ratio between the reduced A1greduced mode and the unperturbed A1g mode.

20.
ACS Nano ; 15(4): 7421-7429, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33759515

RESUMO

Like other 2D materials, the boron-based borophene exhibits interesting structural and electronic properties. While borophene is typically prepared by molecular beam epitaxy, we report here on an alternative way of synthesizing large single-phase borophene domains by segregation-enhanced epitaxy. X-ray photoelectron spectroscopy shows that borazine dosing at 1100 °C onto Ir(111) yields a boron-rich surface without traces of nitrogen. At high temperatures, the borazine thermally decomposes, nitrogen desorbs, and boron diffuses into the substrate. Using time-of-flight secondary ion mass spectrometry, we show that during cooldown the subsurface boron segregates back to the surface where it forms borophene. In this case, electron diffraction reveals a (6 × 2) reconstructed borophene χ6-polymorph, and scanning tunneling spectroscopy suggests a Dirac-like behavior. Studying the kinetics of borophene formation in low energy electron microscopy shows that surface steps are bunched during the borophene formation, resulting in elongated and extended borophene domains with exceptional structural order.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA