Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phytopathology ; 111(4): 684-694, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32931394

RESUMO

Barley is an intermediate or near nonhost to many cereal rust pathogens that infect grasses, making it a highly suitable model to understand the evolution and genetic basis of nonhost resistance (NHR) in plants. To characterize the genetic architecture of NHR in barley, we used the Oregon Wolfe Barley doubled haploid and Morex × SusPtrit recombinant inbred line mapping populations. To elicit a wide array of NHR responses, we tested 492 barley accessions and both mapping populations with pathogenically diverse cereal rust isolates representing distinct formae speciales adapted to Avena, Hordeum, Triticum, and Lolium spp.: P. coronata f. sp. avenae (oat crown rust pathogen) and P. coronata f. sp. lolii (ryegrass crown rust pathogen), P. graminis f. sp. avenae (oat stem rust pathogen) and P. graminis f. sp. lolii (the ryegrass stem rust pathogen), and P. striiformis f. sp. tritici (wheat stripe rust pathogen) and P. striiformis f. sp. pseudo-hordei (barley grass stripe rust pathogen). With the exception of P. coronata f. sp. lolii and P. coronata f. sp. avenae, susceptibility and segregation for NHR was observed in the barley accessions and both mapping populations. Quantitative trait loci (QTLs) for NHR were mapped on all seven chromosomes. NHR in barley to the heterologous rusts tested was attributable to a combination of QTLs with either or both overlapping and distinct specificities. Across both mapping populations, broadly effective NHR loci were also identified that likely play a role in host specialization.


Assuntos
Basidiomycota , Hordeum , Resistência à Doença/genética , Genótipo , Hordeum/genética , Oregon , Doenças das Plantas , Puccinia
2.
Phytopathology ; 108(5): 617-626, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29271300

RESUMO

Barley is a host to Puccinia striiformis f. sp. hordei, and is an intermediate or near nonhost to the formae speciales adapted to wheat (P. striiformis f. sp. tritici) and to barley grass (P. striiformis f. sp. pseudo-hordei). The genetic basis of resistance to these forms of P. striiformis is not well understood. Accordingly, a recombinant inbred line (RIL) population was developed using a P. striiformis-susceptible accession (Biosaline-19) and the immune cultivar Pompadour. We investigated the genetic basis of resistance to four diverse P. striiformis isolates (P. striiformis f. sp. pseudo-hordei, and P. striiformis f. sp. tritici pathotypes 104 E137 A-, 134 E16 A+, and 64 E0 A-). and determined that the immunity in Pompadour at the seedling stage to the different P. striiformis isolates was due to quantitative trait loci (QTL) on chromosomes 1H, 3H, 5H, and 7H with both overlapping and distinct specificities. Further histological analysis confirmed the presence of isolate specificity. The RILs were also assessed in the field for resistance to P. striiformis f. sp. pseudo-hordei, P. striiformis f. sp. hordei, and the leaf rust pathogen (P. hordei) to identify pleiotropic QTL loci effective at the adult plant stage and determine whether the leaf rust resistance in Pompadour (Rph20) was also effective to P. striiformis. RILs that were seedling susceptible to P. striiformis f. sp. pseudo-hordei were resistant in the field, implicating the involvement of adult plant resistance (APR). Additional QTLs were identified on chromosome 7H at the same genetic position as Rph23 (APR to leaf rust), suggesting either pleiotropic resistance or the presence of a stripe rust resistance gene closely linked to or allelic with Rph23. Unlike many pleiotropic APR genes identified and isolated in wheat, our data suggest that the Rph20 locus does not confer resistance to the P. striiformis isolates used in this study (P. striiformis f. sp. hordei [χ2 (independence) = 2.47 P > 0.12] and P. striiformis f. sp. pseudo-hordei [χ2 (independence) = 0.42 P > 0.60]).


Assuntos
Resistência à Doença/genética , Hordeum/genética , Herança Multifatorial , Doenças das Plantas/genética , Locos de Características Quantitativas , Basidiomycota/patogenicidade , Mapeamento Cromossômico , Genótipo , Hordeum/microbiologia , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA