Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Sleep Res ; : e14037, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37731248

RESUMO

Aversive symptoms, including insomnia experienced during opioid withdrawal, are a major drive to relapse; however, withdrawal-associated sleep symptomatology has been little explored in preclinical models. We describe here a model of opioid withdrawal in mice that resembles the sleep phenotype characteristic of withdrawal in humans. Male and female C57BL/6 mice were instrumented with telemeters to record electroencephalogram, electromyogram, activity and subcutaneous temperature. All mice received two treatments separated by a 16-day washout period: (1) saline (volume: 10 ml kg-1 ); or (2) ascending doses of morphine (5, 10, 20, 40 and 80 mg kg-1 ; volume: 10 ml kg-1 ) for 5 days at Zeitgeber time 1 and Zeitgeber time 13. Recordings for the first 71 hr after treatment discontinuation (withdrawal days 1-3) and for 24 hr on withdrawal days 5 and 7 were scored for sleep/wake state, and sleep architecture and electroencephalogram spectral data were analysed. Morphine was acutely wake- and activity-promoting, and non-rapid eye movement and rapid eye movement sleep were increased during the dark phase on withdrawal day 2 in both sexes. While non-rapid eye movement delta power (0.5-4.0 Hz), a measure of sleep intensity, was reduced during the light phase on withdrawal day 1 and the dark phase on withdrawal day 2 in both sexes, female mice also exhibited changes in the duration and the number of bouts of sleep/wake states. These observations of fragmented sleep on withdrawal days 1-3 suggest poorer sleep consolidation and a more pronounced withdrawal-associated sleep phenotype in female than in male mice. These data may indicate a greater sensitivity to morphine, a more distinct aversive sleep phenotype and/or a faster escalation to dependence in female mice.

2.
J Sleep Res ; 32(4): e13839, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36808670

RESUMO

The sleep disorder narcolepsy, a hypocretin deficiency disorder thought to be due to degeneration of hypothalamic hypocretin/orexin neurons, is currently treated symptomatically. We evaluated the efficacy of two small molecule hypocretin/orexin receptor-2 (HCRTR2) agonists in narcoleptic male orexin/tTA; TetO-DTA mice. TAK-925 (1-10 mg/kg, s.c.) and ARN-776 (1-10 mg/kg, i.p.) were injected 15 min before dark onset in a repeated measures design. EEG, EMG, subcutaneous temperature (Tsc ) and activity were recorded by telemetry; recordings for the first 6 h of the dark period were scored for sleep/wake and cataplexy. At all doses tested, TAK-925 and ARN-776 caused continuous wakefulness and eliminated sleep for the first hour. Both TAK-925 and ARN-776 caused dose-related delays in NREM sleep onset. All doses of TAK-925 and all but the lowest dose of ARN-776 eliminated cataplexy during the first hour after treatment; the anti-cataplectic effect of TAK-925 persisted into the second hour for the highest dose. TAK-925 and ARN-776 also reduced the cumulative amount of cataplexy during the 6 h post-dosing period. The acute increase in wakefulness produced by both HCRTR2 agonists was characterised by increased spectral power in the gamma EEG band. Although neither compound provoked a NREM sleep rebound, both compounds affected NREM EEG during the second hour post-dosing. TAK-925 and ARN-776 also increased gross motor activity, running wheel activity, and Tsc , suggesting that the wake-promoting and sleep-suppressing activities of these compounds could be a consequence of hyperactivity. Nonetheless, the anti-cataplectic activity of TAK-925 and ARN-776 is encouraging for the development of HCRTR2 agonists.


Assuntos
Cataplexia , Narcolepsia , Animais , Masculino , Camundongos , Cataplexia/tratamento farmacológico , Narcolepsia/tratamento farmacológico , Receptores de Orexina/uso terapêutico , Orexinas , Sono/fisiologia , Vigília/fisiologia
3.
Sleep ; 45(12)2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-35182424

RESUMO

Narcolepsy Type 1 (NT1), a sleep disorder with similar prevalence in both sexes, is thought to be due to loss of the hypocretin/orexin (Hcrt) neurons. Several transgenic strains have been created to model this disorder and are increasingly being used for preclinical drug development and basic science studies, yet most studies have solely used male mice. We compared the development of narcoleptic symptomatology in male vs. female orexin-tTA; TetO-DTA mice, a model in which Hcrt neuron degeneration can be initiated by removal of doxycycline (DOX) from the diet. EEG, EMG, subcutaneous temperature, gross motor activity, and video recordings were conducted for 24-h at baseline and 1, 2, 4, and 6 weeks after DOX removal. Female DTA mice exhibited cataplexy, the pathognomonic symptom of NT1, by Week 1 in the DOX(-) condition but cataplexy was not consistently present in males until Week 2. By Week 2, both sexes showed an impaired ability to sustain long wake bouts during the active period, the murine equivalent of excessive daytime sleepiness in NT1. Subcutaneous temperature appeared to be regulated at lower levels in both sexes as the Hcrt neurons degenerated. During degeneration, both sexes also exhibited the "Delta State", characterized by sudden cessation of activity, high delta activity in the EEG, maintenance of muscle tone and posture, and the absence of phasic EMG activity. Since the phenotypes of the two sexes were indistinguishable by Week 6, we conclude that both sexes can be safely combined in future studies to reduce cost and animal use.


Assuntos
Cataplexia , Narcolepsia , Animais , Camundongos , Masculino , Feminino , Orexinas/genética , Narcolepsia/genética , Sono/fisiologia , Neurônios , Fenótipo , Vigília/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA