Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 2708, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526808

RESUMO

Eucalyptus plantations around the world have been largely used by the paper industry. Optimizing the management of resources is a common practice in this highly competitive industry and new forest growth models may help to understand the impact of climate change on the decisions of the optimization processes. Current optimized management plans use empirical equations to predict future forest stands growth, and it is currently impractical to replace these empirical equations with physiological models due to data input requirements. In this paper, we present a different approach, by first carrying out a preliminary assessment with the process-based physiological model 3PG to evaluate the growth of Eucalyptus stands under climate change predictions. The information supplied by 3PG was then injected as a modifier in the projected yield that feeds the management plan optimizer allowing the interpretation of climate change impacts on the management plan. Modelling results show that although a general increase of rain with climate change is predicted, the distribution throughout the year will not favor the tree growth. On the contrary, rain will increase when it is less needed (summer) and decrease when it is most needed (winter), decreasing forest stand productivity between 3 and 5%, depending on the region and soil. Evaluation of the current optimized plan that kept constant the relation between wood price/cellulose ton shows a variation in different strategic management options and an overall increase of costs in owned areas between 2 and 4%, and a decrease of cumulated net present value, initially at 15% with later stabilization at 6-8%. This is a basic comparison to observe climate change effects; nevertheless, it provides insights into how the entire decision-making process may change due to a reduction in biomass production under future climate scenarios. This work demonstrates the use of physiological models to extract information that could be merged with existing and already implemented empirical models. The methodology may also be considered a preliminary alternative to the complete replacement of empirical models by physiological models. Our approach allows some insight into forest responses to different future climate conditions, something which empirical models are not designed for.

2.
Nat Ecol Evol ; 1(9): 1285-1291, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29046541

RESUMO

Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.


Assuntos
Carbono/deficiência , Secas , Transpiração Vegetal/fisiologia , Árvores/fisiologia , Xilema/fisiologia , Mudança Climática , Cycadopsida/fisiologia , Magnoliopsida/fisiologia , Dinâmica Populacional , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA