Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Epilepsia Open ; 8(3): 1013-1020, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37310988

RESUMO

OBJECTIVE: Dysregulation of stress-reactive neuroendocrine measures, as well as subjective stress, have been found to worsen epilepsy. Transcutaneous vagus nerve stimulation (tVNS) is a relatively new treatment option for epilepsy. We were interested in its effect on the activity of the hypothalamic-pituitary-adrenal (HPA) axis and autonomic nervous system (ANS) as well as subjective stress and tiredness in patients with temporal lobe epilepsy (TLE). METHODS: Twenty patients (age 44 ± 11 years, 13 women) were enrolled in the study. They were free of seizures for more than 1 year. All took part in two sessions with 4 h of stimulation (tVNS vs. sham) in a randomized order. Saliva samples and subjective stress and tiredness levels were measured at five time points each session (before and after stimulation and three time points every hour in between). Data were analyzed using repeated measures analysis of variance as well as paired t-tests. RESULTS: There was a dampened salivary cortisol (sCort) decrease during tVNS (time × condition effect: F[2.38, 38.15] = 6.50, P = 0.002, partial η2 = 0.29). Furthermore, we detected a dampened increase in salivary flow rate during tVNS (time × condition effect: F[3.28, 55.67] = 2.82, P = 0.043, partial η2 = 0.14). There was neither a difference in overall sCort or salivary alpha-amylase (sAA) levels nor in subjective stress or tiredness levels between conditions. sAA levels at the last measurement point were slightly higher during tVNS (t(19) = 2.26, P = 0.035, d = 0.51), but this effect failed to reach significance when controlled for multiple comparisons. SIGNIFICANCE: Our results partially support that tVNS influences the regulation of stress-reactive neuroendocrine systems (namely the HPA axis and ANS) in epilepsy. More research with larger samples is needed on the difference between short-term and repeated long-term stimulation.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , alfa-Amilases Salivares , Estimulação do Nervo Vago , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Epilepsia do Lobo Temporal/terapia , Estimulação do Nervo Vago/métodos , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Epilepsia/terapia , Sistemas Neurossecretores , Hidrocortisona
2.
Sci Rep ; 12(1): 10255, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715460

RESUMO

The vagus nerve constitutes a key link between the autonomic and the central nervous system. Previous studies provide evidence for the impact of vagal activity on distinct cognitive processes including functions related to social cognition. Recent studies in animals and humans show that vagus nerve stimulation is associated with enhanced reward-seeking and dopamine-release in the brain. Social interaction recruits similar brain circuits to reward processing. We hypothesize that vagus nerve stimulation (VNS) boosts rewarding aspects of social behavior and compare the impact of transcutaneous VNS (tVNS) and sham stimulation on social interaction in 19 epilepsy patients in a double-blind pseudo-randomized study with cross-over design. Using a well-established paradigm, i.e., the prisoner's dilemma, we investigate effects of stimulation on cooperative behavior, as well as interactions of stimulation effects with patient characteristics. A repeated-measures ANOVA and a linear mixed-effects model provide converging evidence that tVNS boosts cooperation. Post-hoc correlations reveal that this effect varies as a function of neuroticism, a personality trait linked to the dopaminergic system. Behavioral modeling indicates that tVNS induces a behavioral starting bias towards cooperation, which is independent of the decision process. This study provides evidence for the causal influence of vagus nerve activity on social interaction.


Assuntos
Epilepsia , Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Comportamento Cooperativo , Epilepsia/terapia , Humanos , Dilema do Prisioneiro , Nervo Vago/fisiologia
3.
Brain Commun ; 3(2): fcab039, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33928247

RESUMO

Whereas the effect of vagal nerve stimulation on emotional states is well established, its effect on cognitive functions is still unclear. Recent rodent studies show that vagal activation enhances reinforcement learning and neuronal dopamine release. The influence of vagal nerve stimulation on reinforcement learning in humans is still unknown. Here, we studied the effect of transcutaneous vagal nerve stimulation on reinforcement learning in eight long-standing seizure-free epilepsy patients, using a well-established forced-choice reward-based paradigm in a cross-sectional, within-subject study design. We investigated vagal nerve stimulation effects on overall accuracy using non-parametric cluster-based permutation tests. Furthermore, we modelled sub-components of the decision process using drift-diffusion modelling. We found higher accuracies in the vagal nerve stimulation condition compared to sham stimulation. Modelling suggests a stimulation-dependent increase in reward sensitivity and shift of accuracy-speed trade-offs towards maximizing rewards. Moreover, vagal nerve stimulation was associated with increased non-decision times suggesting enhanced sensory or attentional processes. No differences of starting bias were detected for both conditions. Accuracies in the extinction phase were higher in later trials of the vagal nerve stimulation condition, suggesting a perseverative effect compared to sham. Together, our results provide first evidence of causal vagal influence on human reinforcement learning and might have clinical implications for the usage of vagal stimulation in learning deficiency.

4.
Brain Stimul ; 14(5): 1126-1132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34187756

RESUMO

BACKGROUND: Transcutaneous auricular vagus nerve stimulation (taVNS) has been investigated regarding its therapeutic properties in several several conditions such as epilepsy, migraine and major depressive disorder and was shown to access similar neural pathways as invasive vagus nerve stimulation. While the vagus nerve's role in gut motility is physiologically established, the effect of taVNS has scarcely been investigated in humans and yielded conflicting results. Real-time gastric magnetic resonance imaging (rtMRI) is an established reproducible method to investigate gastric motility non-invasively. OBJECTIVE: To investigate the influence of taVNS on gastric motility of healthy participants using rtMRI. METHODS: We conducted a randomized, double-blind study using high-frequency (HF) stimulation at 25Hz or low-frequency (LF) taVNS at 1Hz after ingestions of a standardized meal in 57 healthy participants. The gastric motility index (GMI) was determined by measuring the amplitude and velocity of the peristaltic waves using rtMRI. RESULTS: After HF taVNS, GMI was significantly higher than after LF stimulation (p = 0.005), which was mainly attributable to a higher amplitude of the peristaltic waves (p = 0.003). CONCLUSION: We provide evidence that 4-h of taVNS influences gastric motility in healthy human participants for the first time using rtMRI. HF stimulation is associated with higher amplitudes of peristaltic waves in the gastric antrum compared to LF stimulation. Further studies are needed to investigate the effect of different frequencies of taVNS and its therapeutic properties in conditions with impaired gastric motility.


Assuntos
Transtorno Depressivo Maior , Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Método Duplo-Cego , Humanos , Nervo Vago
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA