Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nat Immunol ; 25(9): 1546-1554, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39134750

RESUMO

Tumor angiogenesis and immunity show an inverse correlation in cancer progression and outcome1. Here, we report that ZBTB46, a repressive transcription factor and a widely accepted marker for classical dendritic cells (DCs)2,3, controls both tumor angiogenesis and immunity. Zbtb46 was downregulated in both DCs and endothelial cells by tumor-derived factors to facilitate robust tumor growth. Zbtb46 downregulation led to a hallmark pro-tumor microenvironment (TME), including dysfunctional vasculature and immunosuppressive conditions. Analysis of human cancer data revealed a similar association of low ZBTB46 expression with an immunosuppressive TME and a worse prognosis. In contrast, enforced Zbtb46 expression led to TME changes to restrict tumor growth. Mechanistically, Zbtb46-deficient endothelial cells were highly angiogenic, and Zbtb46-deficient bone marrow progenitors upregulated Cebpb and diverted the DC program to immunosuppressive myeloid lineage output, potentially explaining the myeloid lineage skewing phenomenon in cancer4. Conversely, enforced Zbtb46 expression normalized tumor vessels and, by suppressing Cebpb, skewed bone marrow precursors toward immunostimulatory myeloid lineage output, leading to an immune-hot TME. Remarkably, Zbtb46 mRNA treatment synergized with anti-PD1 immunotherapy to improve tumor management in preclinical models. These findings identify ZBTB46 as a critical factor for angiogenesis and for myeloid lineage skewing in cancer and suggest that maintaining its expression could have therapeutic benefits.


Assuntos
Células Dendríticas , Neovascularização Patológica , Microambiente Tumoral , Animais , Microambiente Tumoral/imunologia , Camundongos , Neovascularização Patológica/imunologia , Neovascularização Patológica/genética , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/genética , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/imunologia , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Feminino , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Camundongos Knockout , Angiogênese , Fatores de Transcrição
2.
J Biol Chem ; 300(7): 107445, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38844137

RESUMO

Fibrillin microfibrils play a critical role in the formation of elastic fibers, tissue/organ development, and cardiopulmonary function. These microfibrils not only provide structural support and flexibility to tissues, but they also regulate growth factor signaling through a plethora of microfibril-binding proteins in the extracellular space. Mutations in fibrillins are associated with human diseases affecting cardiovascular, pulmonary, skeletal, and ocular systems. Fibrillins consist of up to 47 epidermal growth factor-like repeats, of which more than half are modified by protein O-glucosyltransferase 2 (POGLUT2) and/or POGLUT3. Loss of these modifications reduces secretion of N-terminal fibrillin constructs overexpressed in vitro. Here, we investigated the role of POGLUT2 and POGLUT3 in vivo using a Poglut2/3 double knockout (DKO) mouse model. Blocking O-glucosylation caused neonatal death with skeletal, pulmonary, and eye defects reminiscent of fibrillin/elastin mutations. Proteomic analyses of DKO dermal fibroblast medium and extracellular matrix provided evidence that fibrillins were more sensitive to loss of O-glucose compared to other POGLUT2/3 substrates. This conclusion was supported by immunofluorescent analyses of late gestation DKO lungs where FBN levels were reduced and microfibrils appeared fragmented in the pulmonary arteries and veins, bronchioles, and developing saccules. Defects in fibrillin microfibrils likely contributed to impaired elastic fiber formation and histological changes observed in DKO lung blood vessels, bronchioles, and saccules. Collectively, these results highlight the importance of POGLUT2/3-mediated O-glucosylation in vivo and open the possibility that O-glucose modifications on fibrillin influence microfibril assembly and or protein interactions in the ECM environment.


Assuntos
Fibrilinas , Pulmão , Camundongos Knockout , Animais , Camundongos , Animais Recém-Nascidos , Matriz Extracelular/metabolismo , Matriz Extracelular/genética , Fibrilina-1/metabolismo , Fibrilina-1/genética , Fibrilinas/metabolismo , Fibrilinas/genética , Glicosilação , Pulmão/metabolismo , Pulmão/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
3.
Am J Physiol Renal Physiol ; 326(5): F751-F767, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38385175

RESUMO

Conduit arterial disease in chronic kidney disease (CKD) is an important cause of cardiac complications. Cardiac function in CKD has not been studied in the absence of arterial disease. In an Alport syndrome model bred not to have conduit arterial disease, mice at 225 days of life (dol) had CKD equivalent to humans with CKD stage 4-5. Parathyroid hormone (PTH) and FGF23 levels were one log order elevated, circulating sclerostin was elevated, and renal activin A was strongly induced. Aortic Ca levels were not increased, and vascular smooth muscle cell (VSMC) transdifferentiation was absent. The CKD mice were not hypertensive, and cardiac hypertrophy was absent. Freshly excised cardiac tissue respirometry (Oroboros) showed that ADP-stimulated O2 flux was diminished from 52 to 22 pmol/mg (P = 0.022). RNA-Seq of cardiac tissue from CKD mice revealed significantly decreased levels of cardiac mitochondrial oxidative phosphorylation genes. To examine the effect of activin A signaling, some Alport mice were treated with a monoclonal Ab to activin A or an isotype-matched IgG beginning at 75 days of life until euthanasia. Treatment with the activin A antibody (Ab) did not affect cardiac oxidative phosphorylation. However, the activin A antibody was active in the skeleton, disrupting the effect of CKD to stimulate osteoclast number, eroded surfaces, and the stimulation of osteoclast-driven remodeling. The data reported here show that cardiac mitochondrial respiration is impaired in CKD in the absence of conduit arterial disease. This is the first report of the direct effect of CKD on cardiac respiration.NEW & NOTEWORTHY Heart disease is an important morbidity of chronic kidney disease (CKD). Hypertension, vascular stiffness, and vascular calcification all contribute to cardiac pathophysiology. However, cardiac function in CKD devoid of vascular disease has not been studied. Here, in an animal model of human CKD without conduit arterial disease, we analyze cardiac respiration and discover that CKD directly impairs cardiac mitochondrial function by decreasing oxidative phosphorylation. Protection of cardiac oxidative phosphorylation may be a therapeutic target in CKD.


Assuntos
Cardiomegalia , Fator de Crescimento de Fibroblastos 23 , Miocárdio , Insuficiência Renal Crônica , Animais , Fator de Crescimento de Fibroblastos 23/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Modelos Animais de Doenças , Ativinas/metabolismo , Ativinas/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Camundongos , Masculino , Fosforilação Oxidativa , Nefrite Hereditária/metabolismo , Nefrite Hereditária/patologia , Nefrite Hereditária/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Hormônio Paratireóideo/metabolismo
4.
Am J Physiol Heart Circ Physiol ; 325(1): H113-H124, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267118

RESUMO

Thoracic aortic aneurysm is characterized by dilation of the aortic diameter by greater than 50%, which can lead to dissection or rupture. Common histopathology includes extracellular matrix remodeling that may affect transmural mass transport, defined as the movement of fluids and solutes across the wall. We measured in vitro ascending thoracic aorta mass transport in a mouse model with partial aneurysm phenotype penetration due to a mutation in the extracellular matrix protein fibulin-4 [Fbln4E57K/E57K, referred to as MU-A (aneurysm) or MU-NA (no aneurysm)]. To push the aneurysm phenotype, we also included MU mice with reduced levels of lysyl oxidase [Fbln4E57K/E57K;Lox+/-, referred to as MU-XA (extreme aneurysm)] and compared all groups to wild-type (WT) littermates. The phenotype variation allows investigation of how aneurysm severity correlates with mass transport parameters and extracellular matrix organization. We found that MU-NA ascending thoracic aortae have similar hydraulic conductance (Lp) to WT, but 397% higher solute permeability (ω) for 4 kDa FITC-dextran. In contrast, MU-A and MU-XA ascending thoracic aortae have 44-68% lower Lp and similar ω to WT. The results suggest that ascending thoracic aortic aneurysm progression involves an initial increase in ω, followed by a decrease in Lp after the aneurysm has formed. All MU ascending thoracic aortae are longer and have increased elastic fiber fragmentation in the extracellular matrix. There is a negative correlation between diameter and Lp or ω in MU ascending thoracic aortae. Changes in mass transport due to elastic fiber fragmentation could contribute to aneurysm progression or be leveraged for treatment.NEW & NOTEWORTHY Transmural mass transport is quantified in the ascending thoracic aorta of mice with a mutation in fibulin-4 that is associated with thoracic aortic aneurysms. Fluid and solute transport depend on aneurysm severity, correlate with elastic fiber fragmentation, and may be affected by proteoglycan deposition. Transport properties of the ascending thoracic aorta are provided and can be used in computational models. The changes in mass transport may contribute to aneurysm progression or be leveraged for aneurysm treatment.


Assuntos
Aneurisma da Aorta Torácica , Animais , Camundongos , Aorta/metabolismo , Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo
5.
J Lipid Res ; 62: 100079, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33894211

RESUMO

Vascular disease contributes to neurodegeneration, which is associated with decreased blood pressure in older humans. Plasmalogens, ether phospholipids produced by peroxisomes, are decreased in Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders. However, the mechanistic links between ether phospholipids, blood pressure, and neurodegeneration are not fully understood. Here, we show that endothelium-derived ether phospholipids affect blood pressure, behavior, and neurodegeneration in mice. In young adult mice, inducible endothelial-specific disruption of PexRAP, a peroxisomal enzyme required for ether lipid synthesis, unexpectedly decreased circulating plasmalogens. PexRAP endothelial knockout (PEKO) mice responded normally to hindlimb ischemia but had lower blood pressure and increased plasma renin activity. In PEKO as compared with control mice, tyrosine hydroxylase was decreased in the locus coeruleus, which maintains blood pressure and arousal. PEKO mice moved less, slept more, and had impaired attention to and recall of environmental events as well as mild spatial memory deficits. In PEKO hippocampus, gliosis was increased, and a plasmalogen associated with memory was decreased. Despite lower blood pressure, PEKO mice had generally normal homotopic functional connectivity by optical neuroimaging of the cerebral cortex. Decreased glycogen synthase kinase-3 phosphorylation, a marker of neurodegeneration, was detected in PEKO cerebral cortex. In a co-culture system, PexRAP knockdown in brain endothelial cells decreased glycogen synthase kinase-3 phosphorylation in co-cultured astrocytes that was rescued by incubation with the ether lipid alkylglycerol. Taken together, our findings suggest that endothelium-derived ether lipids mediate several biological processes and may also confer neuroprotection in mice.


Assuntos
Pressão Sanguínea
6.
Proc Natl Acad Sci U S A ; 115(34): E8057-E8066, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30082378

RESUMO

Peripheral nerve damage initiates a complex series of structural and cellular processes that culminate in chronic neuropathic pain. The recent success of a type 2 angiotensin II (Ang II) receptor (AT2R) antagonist in a phase II clinical trial for the treatment of postherpetic neuralgia suggests angiotensin signaling is involved in neuropathic pain. However, transcriptome analysis indicates a lack of AT2R gene (Agtr2) expression in human and rodent sensory ganglia, raising questions regarding the tissue/cell target underlying the analgesic effect of AT2R antagonism. We show that selective antagonism of AT2R attenuates neuropathic but not inflammatory mechanical and cold pain hypersensitivity behaviors in mice. Agtr2-expressing macrophages (MΦs) constitute the predominant immune cells that infiltrate the site of nerve injury. Interestingly, neuropathic mechanical and cold pain hypersensitivity can be attenuated by chemogenetic depletion of peripheral MΦs and AT2R-null hematopoietic cell transplantation. Our study identifies AT2R on peripheral MΦs as a critical trigger for pain sensitization at the site of nerve injury, and therefore proposes a translatable peripheral mechanism underlying chronic neuropathic pain.


Assuntos
Dor Crônica/metabolismo , Macrófagos/metabolismo , Neuralgia/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Aloenxertos , Animais , Dor Crônica/genética , Dor Crônica/patologia , Transplante de Células-Tronco Hematopoéticas , Macrófagos/patologia , Camundongos , Neuralgia/genética , Neuralgia/patologia , Receptor Tipo 2 de Angiotensina/genética
7.
Curr Opin Hematol ; 27(3): 190-196, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32141894

RESUMO

PURPOSE OF REVIEW: Elastin has historically been described as an amorphous protein that functions to provide recoil to tissues that stretch. However, evidence is growing that elastin's role may not be limited to biomechanics. In this minireview, we will summarize current knowledge regarding vascular elastic fibers, focusing on structural differences along the arterial tree and how those differences may influence the behavior of affiliated cells. RECENT FINDINGS: Regional heterogeneity, including differences in elastic lamellar number, density and cell developmental origin, plays an important role in vessel health and function. These differences impact cell-cell communication, proliferation and movement. Perturbations of normal cell-matrix interactions are correlated with human diseases including aneurysm, atherosclerosis and hypertension. SUMMARY: Although classically described as a structural protein, recent data suggest that differences in elastin deposition along the arterial tree have important effects on heterotypic cell interactions and human disease.


Assuntos
Artérias , Tecido Elástico , Elastina/metabolismo , Doenças Vasculares , Animais , Artérias/metabolismo , Artérias/patologia , Artérias/fisiopatologia , Tecido Elástico/metabolismo , Tecido Elástico/patologia , Tecido Elástico/fisiopatologia , Humanos , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia , Doenças Vasculares/fisiopatologia
8.
J Physiol ; 597(20): 5093-5108, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31444905

RESUMO

KEY POINTS: We report that a sodium-activated potassium current, IKNa , has been inadvertently overlooked in both conduit and resistance arterial smooth muscle cells. IKNa is a major K+ resting conductance and is absent in cells of IKNa knockout (KO) mice. The phenotype of the IKNa KO is mild hypertension, although KO mice react more strongly than wild-type with raised blood pressure when challenged with vasoconstrictive agents. IKNa is negatively regulated by angiotensin II acting through Gαq protein-coupled receptors. In current clamp, KO arterial smooth muscle cells have easily evoked Ca2+ -dependent action potentials. ABSTRACT: Although several potassium currents have been reported to play a role in arterial smooth muscle (ASM), we find that one of the largest contributors to membrane conductance in both conduit and resistance ASMs has been inadvertently overlooked. In the present study, we show that IKNa , a sodium-activated potassium current, contributes a major portion of macroscopic outward current in a critical physiological voltage range that determines intrinsic cell excitability; IKNa is the largest contributor to ASM cell resting conductance. A genetic knockout (KO) mouse strain lacking KNa channels (KCNT1 and KCNT2) shows only a modest hypertensive phenotype. However, acute administration of vasoconstrictive agents such as angiotensin II (Ang II) and phenylephrine results in an abnormally large increase in blood pressure in the KO animals. In wild-type animals Ang II acting through Gαq protein-coupled receptors down-regulates IKNa , which increases the excitability of the ASMs. The complete genetic removal of IKNa in KO mice makes the mutant animal more vulnerable to vasoconstrictive agents, thus producing a paroxysmal-hypertensive phenotype. This may result from the lowering of cell resting K+ conductance allowing the cells to depolarize more readily to a variety of excitable stimuli. Thus, the sodium-activated potassium current may serve to moderate blood pressure in instances of heightened stress. IKNa may represent a new therapeutic target for hypertension and stroke.


Assuntos
Músculo Liso Vascular/fisiologia , Canais de Potássio Ativados por Sódio/metabolismo , Angiotensina II , Animais , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Camundongos , Camundongos Knockout , Canais de Potássio Ativados por Sódio/genética , Ratos , Ratos Sprague-Dawley
9.
Proc Natl Acad Sci U S A ; 113(31): 8759-64, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27432961

RESUMO

Thoracic aortic aneurysms and dissections (TAAD) represent a substantial cause of morbidity and mortality worldwide. Many individuals presenting with an inherited form of TAAD do not have causal mutations in the set of genes known to underlie disease. Using whole-genome sequencing in two first cousins with TAAD, we identified a missense mutation in the lysyl oxidase (LOX) gene (c.893T > G encoding p.Met298Arg) that cosegregated with disease in the family. Using clustered regularly interspaced short palindromic repeats (CRISPR)/clustered regularly interspaced short palindromic repeats-associated protein-9 nuclease (Cas9) genome engineering tools, we introduced the human mutation into the homologous position in the mouse genome, creating mice that were heterozygous and homozygous for the human allele. Mutant mice that were heterozygous for the human allele displayed disorganized ultrastructural properties of the aortic wall characterized by fragmented elastic lamellae, whereas mice homozygous for the human allele died shortly after parturition from ascending aortic aneurysm and spontaneous hemorrhage. These data suggest that a missense mutation in LOX is associated with aortic disease in humans, likely through insufficient cross-linking of elastin and collagen in the aortic wall. Mutation carriers may be predisposed to vascular diseases because of weakened vessel walls under stress conditions. LOX sequencing for clinical TAAD may identify additional mutation carriers in the future. Additional studies using our mouse model of LOX-associated TAAD have the potential to clarify the mechanism of disease and identify novel therapeutics specific to this genetic cause.


Assuntos
Aneurisma da Aorta Torácica/genética , Dissecção Aórtica/genética , Predisposição Genética para Doença/genética , Mutação com Perda de Função , Proteína-Lisina 6-Oxidase/genética , Adulto , Idoso , Dissecção Aórtica/enzimologia , Animais , Aneurisma da Aorta Torácica/enzimologia , Sequência de Bases , Análise Mutacional de DNA/métodos , Saúde da Família , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Linhagem , Proteína-Lisina 6-Oxidase/metabolismo
10.
J Biol Chem ; 290(35): 21443-59, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26178373

RESUMO

Fibulin-4 is an extracellular matrix protein essential for elastic fiber formation. Frameshift and missense mutations in the fibulin-4 gene (EFEMP2/FBLN4) cause autosomal recessive cutis laxa (ARCL) 1B, characterized by loose skin, aortic aneurysm, arterial tortuosity, lung emphysema, and skeletal abnormalities. Homozygous missense mutations in FBLN4 are a prevalent cause of ARCL 1B. Here we generated a knock-in mouse strain bearing a recurrent fibulin-4 E57K homozygous missense mutation. The mutant mice survived into adulthood and displayed abnormalities in multiple organ systems, including loose skin, bent forelimb, aortic aneurysm, tortuous artery, and pulmonary emphysema. Biochemical studies of dermal fibroblasts showed that fibulin-4 E57K mutant protein was produced but was prone to dimer formation and inefficiently secreted, thereby triggering an endoplasmic reticulum stress response. Immunohistochemistry detected a low level of fibulin-4 E57K protein in the knock-in skin along with altered expression of selected elastic fiber components. Processing of a precursor to mature lysyl oxidase, an enzyme involved in cross-linking of elastin and collagen, was compromised. The knock-in skin had a reduced level of desmosine, an elastin-specific cross-link compound, and ultrastructurally abnormal elastic fibers. Surprisingly, structurally aberrant collagen fibrils and altered organization into fibers were characteristics of the knock-in dermis and forelimb tendons. Type I collagen extracted from the knock-in skin had decreased amounts of covalent intermolecular cross-links, which could contribute to the collagen fibril abnormalities. Our studies provide the first evidence that fibulin-4 plays a role in regulating collagen fibril assembly and offer a preclinical platform for developing treatments for ARCL 1B.


Assuntos
Vasos Sanguíneos/anormalidades , Osso e Ossos/anormalidades , Colágeno Tipo I/metabolismo , Cútis Laxa/patologia , Tecido Elástico/anormalidades , Proteínas da Matriz Extracelular/genética , Técnicas de Introdução de Genes , Pele/patologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência de Bases , Vasos Sanguíneos/patologia , Osso e Ossos/patologia , Colágeno Tipo I/ultraestrutura , Reagentes de Ligações Cruzadas/metabolismo , Cútis Laxa/metabolismo , Modelos Animais de Doenças , Tecido Elástico/patologia , Tecido Elástico/ultraestrutura , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/enzimologia , Fibroblastos/patologia , Membro Anterior/anormalidades , Membro Anterior/diagnóstico por imagem , Membro Anterior/patologia , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Biossíntese de Proteínas , Multimerização Proteica , Proteína-Lisina 6-Oxidase/metabolismo , Radiografia , Tendões/anormalidades , Tendões/patologia , Tendões/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA