Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Malar J ; 20(1): 332, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34320995

RESUMO

BACKGROUND: Early malaria diagnosis and its profiling require the development of new sensing platforms enabling rapid and early analysis of parasites in blood or saliva, aside the widespread rapid diagnostic tests (RDTs). METHODS: This study shows the performance of a cost-effective optical fiber-based solution to target the presence of Plasmodium falciparum histidine-rich protein 2 (PfHRP2). Unclad multimode optical fiber probes are coated with a thin gold film to excite Surface Plasmon Resonance (SPR) yielding high sensitivity to bio-interactions between targets and bioreceptors grafted on the metal surface. RESULTS: Their performances are presented in laboratory conditions using PBS spiked with growing concentrations of purified target proteins and within in vitro cultures. Two probe configurations are studied through label-free detection and amplification using secondary antibodies to show the possibility to lower the intrisic limit of detection. CONCLUSIONS: As malaria hits millions of people worldwide, the improvement and multiplexing of this optical fiber technique can be of great interest, especially for a future purpose of using multiple receptors on the fiber surface or several coated-nanoparticles as amplifiers.


Assuntos
Antígenos de Protozoários/isolamento & purificação , Plasmodium falciparum/química , Proteínas de Protozoários/isolamento & purificação , Técnicas Biossensoriais , Humanos , Fibras Ópticas
2.
Anal Bioanal Chem ; 411(2): 545, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30443771

RESUMO

Unfortunately the name of Jean Jacques Vanden Eynde was missing as co-author of this contribution. The correct list of authors is: Ioan O. Neaga, Stephanie Hambye, Ede Bodoki, Claudio Palmieri, Jean Jacques Vanden Eynde, Eugénie Ansseau, Alexandra Belayew, Radu Oprean, Bertrand Blankert.

3.
J Sep Sci ; 42(7): 1384-1392, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30667156

RESUMO

Marinobufagenin is a bufadienolide compound detected mainly in skin and parotoid gland secretions of Rhinella marina (L.) toad. Bufadienolides regulate the Na+ /K+ -ATPase pump by inhibiting the cardiotonic steroid dependent-site and act as cardiac inotropes with vasoconstrictive properties. Marinobufagenin and other bufadienolides, such as telocinobufagin and bufalin, are thought to be found endogenously in mammals in salt-sensitive hypertensive states such as essential hypertension, congestive heart-failure, and preeclampsia. The role of marinobufagenin as antimicrobial agent and its cytotoxic potential have also been recognized. The particular interest around marinobufagenin prompts us to consider the Rhinella marina toad venom as a possible source for molecules with pharmacological and/or diagnostic potential. In this article, two different approaches of extraction and purification of marinobufagenin from Rhinella marina (L.) venom are studied: (i) Preparative thin-layer chromatography combined to mass spectrometry and/or ultraviolet detection and (ii) solid-phase extraction coupled with fractionation on high-performance liquid chromatography. Different chromatographic conditions are tested for each approach. The solid-phase extraction combined with high-performance liquid chromatography fractionation approach was preferred as it offered a greater yield, was less time-consuming and allowed us to selectively isolate marinobufagenin. Both protocols aim to provide efficient and convenient methods for toad venom extraction, based on an easily automatable and systematized strategy.


Assuntos
Bufanolídeos/isolamento & purificação , Glândula Parótida/química , Animais , Bufanolídeos/química , Bufo marinus , Conformação Molecular
4.
Anal Bioanal Chem ; 410(18): 4495-4507, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29736701

RESUMO

Myotonic dystrophy type 1 (DM1) is an autosomal dominantly inherited degenerative disease with a slow progression. At the present, there is no commercially available treatment, but sustained effort is currently undertaken for the development of a promising lead compound. In the present paper we report the development of a fast, versatile, and cost-effective affinity capillary electrophoresis (ACE) method for the screening and identification of potential drug candidates targeting pathological ARN probes relevant for DM1. The affinity studies were conducted in physiologically relevant conditions using 50 mM HEPES buffer (pH 7.4) in a fused silica capillary dynamically coated with poly(ethylene oxide), by testing a library of potential ligands against (CUG)50 RNA as target probe with a total run time of 4-5 h/ligand. For the most promising ligands, their affinity parameters were assessed and some results formerly reported on the affinity of pentamidine (PTMD) and neomycin against CUG repeats were confirmed. To the best of the authors' knowledge, the estimated binding stoichiometry for some of the tested compounds (i.e., ~ 121:1 for PTMD against the tested RNA probe) is reported for the first time. Additionally, the potential of a novel pentamidine like compound, namely 1,2-ethane bis-1-amino-4-benzamidine (EBAB) with much lower in vivo toxicity than its parent compound has also been confirmed studying its effect on a live cell model by fluorescence microscopy. Further tests, such as the evaluation of the rescue in the mis-splicing of the involved genes, can be performed to corroborate the potential therapeutic value of EBAB in DM1 treatment. Graphical abstract ᅟ.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Eletroforese Capilar/métodos , Distrofia Miotônica/tratamento farmacológico , Benzamidinas/química , Benzamidinas/farmacologia , Avaliação Pré-Clínica de Medicamentos/economia , Eletroforese Capilar/economia , Células HeLa , Humanos , Ligantes , Pentamidina/química , Pentamidina/farmacologia , Motivos de Ligação ao RNA/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
5.
Toxicon ; 227: 107092, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36967019

RESUMO

The rise and spread of resistant Plasmodium falciparum strains are responsible for an increase in therapeutic failures in many of the regions endemic with malaria. The need for new therapeutic candidates is now more urgent than ever. Animal venoms have long been considered as interesting resources to exploit in terms of potential therapeutic candidates. Among these, the cutaneous secretions of toads constitute a rich and diverse source of bioactive molecules. We focused on two different species: Bufo bufo and Incilius alvarius. The dried secretions underwent a solvent-based extraction and were submitted to a systematic bio-guided fractionation approach using preparative thin-layer chromatography. Initial crude extracts were tested in vitro for their antiplasmodial activity. Based on these results, only crude extracts displaying IC50 < 100 µg/mL were considered for further fractionation. All extracts and fractions, including those that did not display antiplasmodial properties, were characterized by chromatographic (LC-UV/MS) and spectrometric techniques (HRMS). Antiplasmodial activity was evaluated in vitro using a chloroquine-sensitive strain (3D7) and a resistant one (W2). Toxicity was assessed on normal human cells for the samples displaying IC50 < 100 µg/mL. Crude extracts from Bufo bufo secretions exhibited no appreciable antiplasmodial activities. However, the methanol and dichloromethane extracts from Incilius alvarius secretions gave IC50 of (34 ± 4) µg/mL and (50 ± 1) µg/mL respectively when tested on W2 strain. No significant effect was observed on 3D7. This poison would warrant further investigation in terms of its antiplasmodial potential. Following preliminary characterization, it was revealed that the fractions of interest contained mainly bufotoxins, bufagins and alkaloids.


Assuntos
Antimaláricos , Malária , Venenos , Animais , Humanos , Antimaláricos/toxicidade , Antimaláricos/análise , Bufo bufo , Extratos Vegetais/uso terapêutico , Malária/tratamento farmacológico , Plasmodium falciparum , Bufonidae
6.
Int J Parasitol Drugs Drug Resist ; 20: 97-107, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36343571

RESUMO

Malaria remains to date one of the most devastating parasitic diseases worldwide. The fight against this disease is rendered more difficult by the emergence and spread of drug-resistant strains. The need for new therapeutic candidates is now greater than ever. In this study, we investigated the antiplasmodial potential of toad venoms. The wide array of bioactive compounds present in Bufonidae venoms has allowed researchers to consider many potential therapeutic applications, especially for cancers and infectious diseases. We focused on small molecules, namely bufadienolides, found in the venom of Rhinella marina (L.). The developed bio-guided fractionation process includes a four solvent-system extraction followed by fractionation using flash chromatography. Sub-fractions were obtained through preparative TLC. All samples were characterized using chromatographic and spectrometric techniques and then underwent testing on in vitro Plasmodium falciparum cultures. Two strains were considered: 3D7 (chloroquine-sensitive) and W2 (chloroquine-resistant). This strategy highlighted a promising activity for one compound named resibufogenin. With IC50 values of (29 ± 8) µg/mL and (23 ± 1) µg/mL for 3D7 and W2 respectively, this makes it an interesting candidate for further investigation. A molecular modelling approach proposed a potential binding mode of resibufogenin to Plasmodium falciparum adenine-triphosphate 4 pump as antimalarial drug target.


Assuntos
Venenos de Anfíbios , Antimaláricos , Malária , Animais , Venenos de Anfíbios/química , Venenos de Anfíbios/uso terapêutico , Antimaláricos/uso terapêutico , Plasmodium falciparum , Malária/tratamento farmacológico , Bufonidae , Extratos Vegetais/química
7.
Biology (Basel) ; 9(8)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785105

RESUMO

Melanoma is the most common cancer in young adults, with a constantly increasing incidence. Metastatic melanoma is a very aggressive cancer with a 5-year survival rate of about 22-25%. This is, in most cases, due to a lack of therapies which are effective on the long term. Hence, it is crucial to find new therapeutic agents to increase patient survival. Toad venoms are a rich source of potentially pharmaceutically active compounds and studies have highlighted their possible effect on cancer cells. We focused on the venoms of two different toad species: Bufo bufo and Rhinella marina. We screened the venom crude extracts, the fractions from crude extracts and isolated biomolecules by studying their antiproliferative properties on melanoma cells aiming to determine the compound or the combination of compounds with the highest antiproliferative effect. Our results indicated strong antiproliferative capacities of toad venoms on melanoma cells. We found that these effects were mainly due to bufadienolides that are cardiotonic steroids potentially acting on the Na+/K+ ATPase pump which is overexpressed in melanoma. Finally, our results indicated that bufalin alone was the most interesting compound among the isolated bufadienolides because it had the highest antiproliferative activity on melanoma cells.

8.
ACS Omega ; 4(19): 18126-18135, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31720515

RESUMO

Dystrophia myotonica type 1 (DM1) results from nuclear sequestration of splicing factors by a messenger RNA (mRNA) harboring a large (CUG) n repeat array transcribed from the causal (CTG) n DNA amplification. Several compounds were previously shown to bind the (CUG) n RNA and release the splicing factors. We now investigated for the first time the interaction of an aliphatic polycarbonate carrying guanidinium functions to DM1 DNA/RNA model probes by affinity capillary electrophoresis. The apparent association constants (K a) were in the range described for reference compounds such as pentamidine. Further macromolecular engineering could improve association specificity. The polymer presented no toxicity in cell culture at concentrations of 1.6-100.0 µg/mL as evaluated both by MTT and real-time monitoring xCELLigence method. These promising results may lay the foundation for a new branch of potential therapeutic agents for DM1.

10.
Anal Chim Acta ; 916: 8-16, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27016433

RESUMO

The untargeted profiling of steroids constitutes a growing research field because of their importance as biomarkers of endocrine disruption. New technologies in analytical chemistry, such as ultra high-pressure liquid chromatography coupled with mass spectrometry (MS), offer the possibility of a fast and sensitive analysis. Nevertheless, difficulties regarding steroid identification are encountered when considering isotopomeric steroids. Thus, the use of retention times is of great help for the unambiguous identification of steroids. In this context, starting from the linear solvent strength (LSS) theory, quantitative structure retention relationship (QSRR) models, based on a dataset composed of 91 endogenous steroids and VolSurf + descriptors combined with a new dedicated molecular fingerprint, were developed to predict retention times of steroid structures in any gradient mode conditions. Satisfactory performance was obtained during nested cross-validation with a predictive ability (Q(2)) of 0.92. The generalisation ability of the model was further confirmed by an average error of 4.4% in external prediction. This allowed the list of candidates associated with identical monoisotopic masses to be strongly reduced, facilitating definitive steroid identification.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Espectrometria de Massas/métodos , Esteroides/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA