Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Glia ; 68(9): 1925-1940, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32154952

RESUMO

White matter (WM) pathology is a clinically predictive feature of vascular cognitive impairment and dementia (VCID). Mice overexpressing transforming growth factor-ß1 (TGF) with an underlying cerebrovascular pathology when fed a high cholesterol diet (HCD) develop cognitive deficits (VCID mice) that we recently found could be prevented by physical exercise (EX). Here, we further investigated cognitive and WM pathology in VCID mice and examined the cellular substrates of the protective effects of moderate aerobic EX focusing on WM alterations. Six groups were studied: Wild-type (WT) and TGF mice (n = 20-24/group) fed standard lab chow or a 2% HCD, with two HCD-fed groups given concurrent access to running wheels. HCD had a significant negative effect in TGF mice that was prevented by EX on working and object recognition memory, the latter also altered in WT HCD mice. Whisker-evoked increases in cerebral blood flow (CBF) were reduced in HCD-fed mice, deficits that were countered by EX, and baseline WM CBF was similarly affected. VCID mice displayed WM functional deficits characterized by lower compound action potential amplitude not found in EX groups. Moreover, there was an increased number of collapsing capillaries, galectin-3-expressing microglial cells, as well as a reduced number of oligodendrocytes in the WM of VCID mice; all of which were prevented by EX. Our findings indicate that a compromised cerebral circulation precedes reduced WM vascularization, enhanced WM inflammation and impaired oligodendrogenesis that all likely account for the increased susceptibility to memory impairments in VCID mice, which can be prevented by EX. MAIN POINTS: A compromised cerebral circulation increases susceptibility to anatomical and functional white matter changes that develop alongside cognitive deficits when challenged with a high cholesterol diet; preventable by a translational regimen of exercise.


Assuntos
Disfunção Cognitiva , Demência Vascular , Substância Branca , Animais , Colesterol , Cognição , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Camundongos , Condicionamento Físico Animal
2.
Neurobiol Dis ; 134: 104644, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31669735

RESUMO

Angiotensin II type 1 receptor antagonists like losartan have been found to lower the incidence and progression to Alzheimer's disease (AD), as well as rescue cognitive and cerebrovascular deficits in AD mouse models. We previously found that co-administration of an angiotensin IV (AngIV) receptor (AT4R) antagonist prevented losartan's benefits, identifying AT4Rs as a possible target to counter AD pathogenesis. Therein, we investigated whether directly targeting AT4Rs could counter AD pathogenesis in a well-characterized mouse model of AD. Wild-type and human amyloid precursor protein (APP) transgenic (J20 line) mice (4.5 months old) received vehicle or AngIV (~1.3 nmol/day, 1 month) intracerebroventricularly via osmotic minipumps. AngIV restored short-term memory, spatial learning and memory in APP mice. AngIV normalized hippocampal AT4R levels, increased hippocampal subgranular zone cellular proliferation and dendritic arborization, and reduced oxidative stress. AngIV rescued whisker-evoked neurovascular coupling, endothelial- and smooth muscle cell-mediated cerebral vasodilatory responses, and cerebrovascular nitric oxide bioavailability. AngIV did not alter blood pressure, neuroinflammation or amyloid-ß (Aß) pathology. These preclinical findings identify AT4R as a promising target to counter Aß-related cognitive and cerebrovascular deficits in AD.


Assuntos
Doença de Alzheimer/patologia , Angiotensina II/análogos & derivados , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Acoplamento Neurovascular/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/genética , Angiotensina II/farmacologia , Animais , Modelos Animais de Doenças , Humanos , Infusões Intraventriculares , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
3.
FASEB J ; 33(12): 13280-13293, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31557051

RESUMO

Aerobic physical exercise (EX) and controlling cardiovascular risk factors in midlife can improve and protect cognitive function in healthy individuals and are considered to be effective at reducing late-onset dementia incidence. By investigating commonalities between these preventative approaches, we sought to identify possible targets for effective interventions. We compared the efficacy of EX and simvastatin (SV) pharmacotherapy to counteract cognitive deficits induced by a high-cholesterol diet (2%, HCD) in mice overexpressing TGF-ß1 (TGF mice), a model of vascular cognitive impairment and dementia. Cognitive deficits were found in hypercholesterolemic mice for object recognition memory, and both SV and EX prevented this decline. EX improved stimulus-evoked cerebral blood flow responses and was as effective as SV in normalizing endothelium-dependent vasodilatory responses in cerebral arteries. The up-regulation of galectin-3-positive microglial cells in white matter (WM) of HCD-fed TGF mice with cognitive deficits was significantly reduced by both SV and EX concurrently with cognitive recovery. Altered hippocampal neurogenesis, gray matter astrogliosis, or microgliosis did not correlate with cognitive deficits or benefits. Overall, results indicate that SV and EX prevented cognitive decline in hypercholesterolemic mice and that they share common sites of action in preventing endothelial cell dysfunction and reducing WM inflammation.-Trigiani, L. J., Royea, J., Tong, X.-K., Hamel, E. Comparative benefits of simvastatin and exercise in a mouse model of vascular cognitive impairment and dementia.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/terapia , Demência/tratamento farmacológico , Demência/terapia , Condicionamento Físico Animal/métodos , Sinvastatina/uso terapêutico , Animais , Circulação Cerebrovascular/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/terapia , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo
4.
Learn Mem ; 26(3): 77-83, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30770464

RESUMO

Netrin-1 was initially characterized as an axon guidance molecule that is essential for normal embryonic neural development; however, many types of neurons continue to express netrin-1 in the postnatal and adult mammalian brain. Netrin-1 and the netrin receptor DCC are both enriched at synapses. In the adult hippocampus, activity-dependent secretion of netrin-1 by neurons potentiates glutamatergic synapse function, and is critical for long-term potentiation, an experimental cellular model of learning and memory. Here, we assessed the impact of neuronal expression of netrin-1 in the adult brain on behavior using tests of learning and memory. We show that adult mice exhibit impaired spatial memory following conditional deletion of netrin-1 from glutamatergic neurons in the hippocampus and neocortex. Further, we provide evidence that mice with conditional deletion of netrin-1 do not display aberrant anxiety-like phenotypes and show a reduction in self-grooming behavior. These findings reveal a critical role for netrin-1 expressed by neurons in the regulation of spatial memory formation.


Assuntos
Hipocampo/fisiologia , Neocórtex/fisiologia , Netrina-1/fisiologia , Neurônios/fisiologia , Memória Espacial/fisiologia , Animais , Comportamento Animal , Feminino , Ácido Glutâmico/fisiologia , Hipocampo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neocórtex/metabolismo , Netrina-1/metabolismo , Neurônios/metabolismo
5.
J Neurosci ; 37(22): 5562-5573, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28476949

RESUMO

The use of angiotensin receptor blockers (ARBs) correlates with reduced onset and progression of Alzheimer's disease (AD). The mechanism depicting how ARBs such as losartan restore cerebrovascular and cognitive deficits in AD is unknown. Here, we propose a mechanism underlying losartan's benefits by selectively blocking the effects of angiotensin IV (AngIV) at its receptor (AT4R) with divalinal in mice overexpressing the AD-related Swedish and Indiana mutations of the human amyloid precursor protein (APP mice) and WT mice. Young (3-month-old) mice were treated with losartan (∼10 mg/kg/d, 4 months), followed by intracerebroventricular administration of vehicle or divalinal in the final month of treatment. Spatial learning and memory were assessed using Morris water mazes at 3 and 4 months of losartan treatment. Cerebrovascular reactivity and whisker-evoked neurovascular coupling responses were measured at end point (∼7 months of age), together with biomarkers related to neuronal and vascular oxidative stress (superoxide dismutase-2), neuroinflammation (astroglial and microglial activation), neurogenesis (BrdU-labeled newborn cells), and amyloidosis [soluble amyloid-ß (Aß) species and Aß plaque load]. Divalinal countered losartan's capacity to rescue spatial learning and memory and blocked losartan's benefits on dilatory function and baseline nitric oxide bioavailability. Divalinal reverted losartan's anti-inflammatory effects, but failed to modify losartan-mediated reductions in oxidative stress. Neither losartan nor divalinal affected arterial blood pressure or significantly altered the amyloid pathology in APP mice. Our findings identify activation of the AngIV/AT4R cascade as the underlying mechanism in losartan's benefits and a target that could restore Aß-related cognitive and cerebrovascular deficits in AD.SIGNIFICANCE STATEMENT Antihypertensive medications that target the renin angiotensin system, such as angiotensin receptor blockers (ARBs), have been associated with lower incidence and progression of Alzheimer's disease (AD) in cohort studies. However, the manner by which ARBs mediate their beneficial effects is unknown. Here, the angiotensin IV receptor (AT4R) was identified as mediating the cognitive and cerebrovascular rescue of losartan, a commonly prescribed ARB, in a mouse model of AD. The AT4R was further implicated in mediating anti-inflammatory benefits. AT4R-mediated effects were independent from changes in blood pressure, amyloidosis, and oxidative stress. Overall, our results implicate the angiotensin IV/AT4R cascade as a promising candidate for AD intervention.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/fisiopatologia , Circulação Cerebrovascular/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/fisiopatologia , Losartan/administração & dosagem , Receptores de Angiotensina/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Animais , Cognição/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Aprendizagem Espacial/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos
6.
J Neurosci ; 37(6): 1518-1531, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28069927

RESUMO

Brain imaging techniques that use vascular signals to map changes in neuronal activity rely on the coupling between electrophysiology and hemodynamics, a phenomenon referred to as "neurovascular coupling" (NVC). It is unknown whether this relationship remains reliable under altered brain states associated with acetylcholine (ACh) levels, such as attention and arousal and in pathological conditions such as Alzheimer's disease. We therefore assessed the effects of varying ACh tone on whisker-evoked NVC responses in rat barrel cortex, measured by cerebral blood flow (CBF) and neurophysiological recordings (local field potentials, LFPs). We found that acutely enhanced ACh tone significantly potentiated whisker-evoked CBF responses through muscarinic ACh receptors and concurrently facilitated neuronal responses, as illustrated by increases in the amplitude and power in high frequencies of the evoked LFPs. However, the cellular identity of the activated neuronal network within the responsive barrel was unchanged, as characterized by c-Fos upregulation in pyramidal cells and GABA interneurons coexpressing vasoactive intestinal polypeptide. In contrast, chronic ACh deprivation hindered whisker-evoked CBF responses and the amplitude and power in most frequency bands of the evoked LFPs and reduced the rostrocaudal extent and area of the activated barrel without altering its identity. Correlations between LFP power and CBF, used to estimate NVC, were enhanced under high ACh tone and disturbed significantly by ACh depletion. We conclude that ACh is not only a facilitator but also a prerequisite for the full expression of sensory-evoked NVC responses, indicating that ACh may alter the fidelity of hemodynamic signals in assessing changes in evoked neuronal activity.SIGNIFICANCE STATEMENT Neurovascular coupling, defined as the tight relationship between activated neurons and hemodynamic responses, is a fundamental brain function that underlies hemodynamic-based functional brain imaging techniques. However, the impact of altered brain states on this relationship is largely unknown. We therefore investigated how acetylcholine (ACh), known to drive brain states of attention and arousal and to be deficient in pathologies such as Alzheimer's disease, would alter neurovascular coupling responses to sensory stimulation. Whereas acutely increased ACh enhanced neuronal responses and the resulting hemodynamic signals, chronic loss of cholinergic input resulted in dramatic impairments in both types of sensory-evoked signals. We conclude that ACh is not only a potent modulator but also a requirement for the full expression of sensory-evoked neurovascular coupling responses.


Assuntos
Acetilcolina/fisiologia , Circulação Cerebrovascular/fisiologia , Acoplamento Neurovascular/fisiologia , Receptores Nicotínicos/fisiologia , Vibrissas/fisiologia , Animais , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Circulação Cerebrovascular/efeitos dos fármacos , Masculino , Acoplamento Neurovascular/efeitos dos fármacos , Antagonistas Nicotínicos/farmacologia , Estimulação Física/métodos , Ratos , Ratos Sprague-Dawley , Vibrissas/efeitos dos fármacos
7.
Can J Physiol Pharmacol ; 96(5): 527-534, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29505736

RESUMO

Transgenic mice constitutively overexpressing the cytokine transforming growth factor-ß1 (TGF-ß1) (TGF mice) display cerebrovascular alterations as seen in Alzheimer's disease (AD) and vascular cognitive impairment and dementia (VCID), but no or only subtle cognitive deficits. TGF-ß1 may exert part of its deleterious effects through interactions with angiotensin II (AngII) type 1 receptor (AT1R) signaling pathways. We test such interactions in the brain and cerebral vessels of TGF mice by measuring cerebrovascular reactivity, levels of protein markers of vascular fibrosis, nitric oxide synthase activity, astrogliosis, and mnemonic performance in mice treated (6 months) with the AT1R blocker losartan (10 mg/kg per day) or the angiotensin converting enzyme inhibitor enalapril (3 mg/kg per day). Both treatments restored the severely impaired cerebrovascular reactivity to acetylcholine, calcitonin gene-related peptide, endothelin-1, and the baseline availability of nitric oxide in aged TGF mice. Losartan, but not enalapril, significantly reduced astrogliosis and cerebrovascular levels of profibrotic protein connective tissue growth factor while raising levels of antifibrotic enzyme matrix metallopeptidase-9. Memory was unaffected by aging and treatments. The results suggest a pivotal role for AngII in TGF-ß1-induced cerebrovascular dysfunction and neuroinflammation through AT1R-mediated mechanisms. Further, they suggest that AngII blockers could be appropriate against vasculopathies and astrogliosis associated with AD and VCID.


Assuntos
Encéfalo/irrigação sanguínea , Gliose/patologia , Gliose/fisiopatologia , Receptor Tipo 1 de Angiotensina/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Enalapril/farmacologia , Enalapril/uso terapêutico , Feminino , Fibrose , Gliose/metabolismo , Losartan/farmacologia , Losartan/uso terapêutico , Masculino , Camundongos , Camundongos Transgênicos , Transdução de Sinais/efeitos dos fármacos
8.
J Neurosci ; 35(34): 11791-810, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26311764

RESUMO

Vasodilatory prostaglandins play a key role in neurovascular coupling (NVC), the tight link between neuronal activity and local cerebral blood flow, but their precise identity, cellular origin and the receptors involved remain unclear. Here we show in rats that NMDA-induced vasodilation and hemodynamic responses evoked by whisker stimulation involve cyclooxygenase-2 (COX-2) activity and activation of the prostaglandin E2 (PgE2) receptors EP2 and EP4. Using liquid chromatography-electrospray ionization-tandem mass spectrometry, we demonstrate that PgE2 is released by NMDA in cortical slices. The characterization of PgE2 producing cells by immunohistochemistry and single-cell reverse transcriptase-PCR revealed that pyramidal cells and not astrocytes are the main cell type equipped for PgE2 synthesis, one third expressing COX-2 systematically associated with a PgE2 synthase. Consistent with their central role in NVC, in vivo optogenetic stimulation of pyramidal cells evoked COX-2-dependent hyperemic responses in mice. These observations identify PgE2 as the main prostaglandin mediating sensory-evoked NVC, pyramidal cells as their principal source and vasodilatory EP2 and EP4 receptors as their targets. SIGNIFICANCE STATEMENT: Brain function critically depends on a permanent spatiotemporal match between neuronal activity and blood supply, known as NVC. In the cerebral cortex, prostaglandins are major contributors to NVC. However, their biochemical identity remains elusive and their cellular origins are still under debate. Although astrocytes can induce vasodilations through the release of prostaglandins, the recruitment of this pathway during sensory stimulation is questioned. Using multidisciplinary approaches from single-cell reverse transcriptase-PCR, mass spectrometry, to ex vivo and in vivo pharmacology and optogenetics, we provide compelling evidence identifying PgE2 as the main prostaglandin in NVC, pyramidal neurons as their main cellular source and the vasodilatory EP2 and EP4 receptors as their main targets. These original findings will certainly change the current view of NVC.


Assuntos
Córtex Cerebral/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Células Piramidais/metabolismo , Vasodilatação/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Ratos Wistar
9.
Cell Mol Neurobiol ; 36(2): 219-32, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26993506

RESUMO

Alzheimer's disease (AD) is a multifactorial and multifaceted disease for which we currently have very little to offer since there is no curative therapy, with only limited disease-modifying drugs. Recent studies in AD mouse models that recapitulate the amyloid-ß (Aß) pathology converge to demonstrate that it is possible to salvage cerebrovascular function with a variety of drugs and, particularly, therapies used to treat cardiovascular diseases such as hypercholesterolemia and hypertension. These drugs can reestablish dilatory function mediated by various endothelial and smooth muscle ion channels as well as nitric oxide availability, benefits that result in normalized brain perfusion. These cerebrovascular benefits would favor brain perfusion, which may help maintain neuronal function and, possibly, delay cognitive failure. However, restoring cerebrovascular function in AD mouse models was not necessarily accompanied by rescue of cognitive deficits related to spatial learning and memory. The results with cardiovascular therapies rather suggest that drugs originally designed to treat cardiovascular diseases that concurrently restore cerebrovascular and cognitive function do so through their pleiotropic effects. Specifically, recent findings suggest that these drugs act directly on brain cells and neuronal pathways involved in memory formation, hence, working simultaneously albeit independently on neuronal and vascular targets. These findings may help select medications for patients with cardiovascular diseases at risk of developing AD with increasing age. Further, they may identify molecular targets for recovering memory pathways that bear potential for new therapeutic avenues.


Assuntos
Doença de Alzheimer/terapia , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Transtornos Cognitivos/terapia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Animais , Transtornos Cognitivos/fisiopatologia , Humanos , Losartan/uso terapêutico , Sinvastatina/uso terapêutico
10.
Brain ; 138(Pt 2): 336-55, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25567323

RESUMO

Severe progressive neurological paediatric disease mucopolysaccharidosis III type C is caused by mutations in the HGSNAT gene leading to deficiency of acetyl-CoA: α-glucosaminide N-acetyltransferase involved in the lysosomal catabolism of heparan sulphate. To understand the pathophysiology of the disease we generated a mouse model of mucopolysaccharidosis III type C by germline inactivation of the Hgsnat gene. At 6-8 months mice showed hyperactivity, and reduced anxiety. Cognitive memory decline was detected at 10 months and at 12-13 months mice showed signs of unbalanced hesitant walk and urinary retention. Lysosomal accumulation of heparan sulphate was observed in hepatocytes, splenic sinus endothelium, cerebral microglia, liver Kupffer cells, fibroblasts and pericytes. Starting from 5 months, brain neurons showed enlarged, structurally abnormal mitochondria, impaired mitochondrial energy metabolism, and storage of densely packed autofluorescent material, gangliosides, lysozyme, phosphorylated tau, and amyloid-ß. Taken together, our data demonstrate for the first time that deficiency of acetyl-CoA: α-glucosaminide N-acetyltransferase causes lysosomal accumulation of heparan sulphate in microglial cells followed by their activation and cytokine release. They also show mitochondrial dysfunction in the neurons and neuronal loss explaining why mucopolysaccharidosis III type C manifests primarily as a neurodegenerative disease.


Assuntos
Doenças Mitocondriais/patologia , Mucopolissacaridose III/patologia , Neurite (Inflamação)/patologia , Doenças Neurodegenerativas/patologia , Acetiltransferases/deficiência , Acetiltransferases/genética , Animais , Comportamento Animal , Metabolismo Energético/fisiologia , Gangliosídeos/metabolismo , Glicosaminoglicanos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Doenças Mitocondriais/etiologia , Mucopolissacaridose III/complicações , Mucopolissacaridose III/psicologia , Neurite (Inflamação)/etiologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/psicologia , Exame Neurológico , Deficiências na Proteostase/patologia
11.
J Cardiovasc Pharmacol ; 65(4): 317-24, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25384195

RESUMO

Alzheimer's disease is a neurodegenerative disease associated with a cerebrovascular pathology partly imputed to increased brain levels of amyloid beta (Aß) peptide and transforming growth factor-ß1 (TGF-ß1). Using transgenic mice that overproduce Aß (APP mice) or TGF-ß1 (TGF mice), we found that both induce impairments of cerebrovascular function and structural changes of the vessel wall. Soluble Aß species affect blood vessel primarily by increasing oxidative stress, which results in reduced nitric oxide-mediated dilations and impaired signaling of endothelial transient receptor potential vanilloid type 4 and smooth muscle KATP channels. These impairments occur early in the disease process and can be rescued by either antioxidants (Tempol, N-acetylcysteine) or therapy with antioxidant properties (simvastatin). In contrast, comparable impairments in TGF mice were insensitive to antioxidants and could only be rescued by therapy with pleiotropic effects. The blood flow response evoked by whisker stimulation was impaired in both APP and TGF mice. In contrast, the cerebral uptake of glucose induced by this stimulus was reduced only in APP mice, pointing to preserved neuronal function in the TGF mice. Accordingly, despite similar but mechanistically different cerebrovascular deficits in APP and TGF mice, overt cognitive deficits were seen only in APP mice and could be rescued depending on age.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Antioxidantes/farmacologia , Vasos Sanguíneos , Encéfalo/metabolismo , Cognição/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Vasos Sanguíneos/fisiopatologia , Circulação Cerebrovascular , Modelos Animais de Doenças , Canais KATP/metabolismo , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
12.
Proc Natl Acad Sci U S A ; 109(9): 3510-5, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22308347

RESUMO

A 30-d course of oral administration of a semipurified extract of the root of Withania somnifera consisting predominantly of withanolides and withanosides reversed behavioral deficits, plaque pathology, accumulation of ß-amyloid peptides (Aß) and oligomers in the brains of middle-aged and old APP/PS1 Alzheimer's disease transgenic mice. It was similarly effective in reversing behavioral deficits and plaque load in APPSwInd mice (line J20). The temporal sequence involved an increase in plasma Aß and a decrease in brain Aß monomer after 7 d, indicating increased transport of Aß from the brain to the periphery. Enhanced expression of low-density lipoprotein receptor-related protein (LRP) in brain microvessels and the Aß-degrading protease neprilysin (NEP) occurred 14-21 d after a substantial decrease in brain Aß levels. However, significant increase in liver LRP and NEP occurred much earlier, at 7 d, and were accompanied by a rise in plasma sLRP, a peripheral sink for brain Aß. In WT mice, the extract induced liver, but not brain, LRP and NEP and decreased plasma and brain Aß, indicating that increase in liver LRP and sLRP occurring independent of Aß concentration could result in clearance of Aß. Selective down-regulation of liver LRP, but not NEP, abrogated the therapeutic effects of the extract. The remarkable therapeutic effect of W. somnifera mediated through up-regulation of liver LRP indicates that targeting the periphery offers a unique mechanism for Aß clearance and reverses the behavioral deficits and pathology seen in Alzheimer's disease models.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/sangue , Fígado/efeitos dos fármacos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/biossíntese , Fitoterapia , Extratos Vegetais/uso terapêutico , Withania/química , Administração Oral , Doença de Alzheimer/sangue , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Fígado/metabolismo , Fígado/patologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/patologia , Neprilisina/biossíntese , Neprilisina/genética , Neprilisina/fisiologia , Oligonucleotídeos Antissenso/farmacologia , Especificidade de Órgãos , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/química , Placa Amiloide/patologia , Presenilina-1/genética , Regulação para Cima
13.
J Neurosci ; 33(8): 3390-401, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23426667

RESUMO

The locus coeruleus (LC), the main source of brain noradrenalin (NA), modulates cortical activity, cerebral blood flow (CBF), glucose metabolism, and blood-brain barrier permeability. However, the role of the LC-NA system in the regulation of cortical CBF has remained elusive. This rat study shows that similar proportions (∼20%) of cortical pyramidal cells and GABA interneurons are contacted by LC-NA afferents on their cell soma or proximal dendrites. LC stimulation induced ipsilateral activation (c-Fos upregulation) of pyramidal cells and of a larger proportion (>36%) of interneurons that colocalize parvalbumin, somatostatin, or nitric oxide synthase compared with pyramidal cells expressing cyclooxygenase-2 (22%, p < 0.05) or vasoactive intestinal polypeptide-containing interneurons (16%, p < 0.01). Concurrently, LC stimulation elicited larger ipsilateral compared with contralateral increases in cortical CBF (52 vs 31%, p < 0.01). These CBF responses were almost abolished (-70%, p < 0.001) by cortical NA denervation with DSP-4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride] and were significantly reduced by α- and ß-adrenoceptor antagonists (-40%, p < 0.001 and -30%, p < 0.05, respectively). Blockade of glutamatergic or GABAergic neurotransmission with NMDA or GABA(A) receptor antagonists potently reduced the LC-induced hyperemic response (-56%, p < 0.001 or -47%, p < 0.05). Moreover, inhibition of astroglial metabolism (-35%, p < 0.01), vasoactive epoxyeicosatrienoic acids (EETs; -60%, p < 0.001) synthesis, large-conductance, calcium-operated (BK, -52%, p < 0.05), and inward-rectifier (Kir, -40%, p < 0.05) K+ channels primarily impaired the hyperemic response. The data demonstrate that LC stimulation recruits a broad network of cortical excitatory and inhibitory neurons resulting in increased cortical activity and that K+ fluxes and EET signaling mediate a large part of the hemodynamic response.


Assuntos
Córtex Cerebral/fisiologia , Circulação Cerebrovascular/fisiologia , Locus Cerúleo/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/fisiologia , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/citologia , Locus Cerúleo/irrigação sanguínea , Locus Cerúleo/citologia , Masculino , Rede Nervosa/irrigação sanguínea , Rede Nervosa/citologia , Ratos , Ratos Sprague-Dawley
14.
J Neurochem ; 131(6): 778-90, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25111043

RESUMO

Heme oxygenase-1 (HO-1) encoded by the HMOX1 gene is a 32-kDa stress protein that catabolizes heme to biliverdin, free iron, and carbon monoxide (CO). Glial HO-1 is over-expressed in the CNS of subjects with Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). The HMOX1 gene is exquisitely sensitive to oxidative stress and is induced in brain and other tissues in various models of disease and trauma. Induction of the glial HMOX1 gene may lead to pathological brain iron deposition, intracellular oxidative damage, and bioenergetic failure in AD and other human CNS disorders such as PD and MS. Therefore, targeted suppression of glial HO-1 hyperactivity may prove to be a rational and effective therapeutic intervention in AD and related neurodegenerative disorders. In this study, we report the effects of QC-47, QC-56, and OB-28, novel azole-based competitive and reversible inhibitors of HO-1, on oxidative damage to whole-cell and mitochondrial compartments in rat astrocytes transfected with the HMOX1 gene. We also report the effect of OB-28 on the behavior and neuropathology of APP(swe)/PS1(∆E9) mice. OB-28 was found to reduce oxidative damage to whole-cell and mitochondrial compartments in rat astrocytes transfected with the HMOX1 gene. Moreover, OB-28 was found to significantly counter behavioral deficits and neuropathological alterations in APP(swe)/PS1(∆E9) mice. Attenuation of AD-associated behavioral deficits and neuropathological changes suggests that HO-1 may be a promising target for neuroprotective intervention in AD and other neurodegenerative diseases. We propose that the targeted suppression of glial heme oxygenase-1 (HO-1) hyperactivity may prove to be a rational and effective therapeutic intervention in Alzheimer's disease (AD) and related neurodegenerative disorders. We report attenuation by a selective HO-1 inhibitor of oxidative damage to whole-cell and mitochondrial compartments in astrocytes in vitro and amelioration of behavioral anomalies in a transgenic mouse model of AD.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/efeitos dos fármacos , Azóis/farmacologia , Heme Oxigenase-1/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Envelhecimento/metabolismo , Doença de Alzheimer/genética , Animais , Modelos Animais de Doenças , Heme Oxigenase-1/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Neuroglia/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
15.
Neurobiol Dis ; 68: 126-36, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24807206

RESUMO

Angiotensin II (AngII) receptor blockers that bind selectively AngII type 1 (AT1) receptors may protect from Alzheimer's disease (AD). We studied the ability of the AT1 receptor antagonist losartan to cure or prevent AD hallmarks in aged (~18months at endpoint, 3months treatment) or adult (~12months at endpoint, 10months treatment) human amyloid precursor protein (APP) transgenic mice. We tested learning and memory with the Morris water maze, and evaluated neurometabolic and neurovascular coupling using [(18)F]fluoro-2-deoxy-D-glucose-PET and laser Doppler flowmetry responses to whisker stimulation. Cerebrovascular reactivity was assessed with on-line videomicroscopy. We measured protein levels of oxidative stress enzymes (superoxide dismutases SOD1, SOD2 and NADPH oxidase subunit p67phox), and quantified soluble and deposited amyloid-ß (Aß) peptide, glial fibrillary acidic protein (GFAP), AngII receptors AT1 and AT2, angiotensin IV receptor AT4, and cortical cholinergic innervation. In aged APP mice, losartan did not improve learning but it consolidated memory acquisition and recall, and rescued neurovascular and neurometabolic coupling and cerebrovascular dilatory capacity. Losartan normalized cerebrovascular p67phox and SOD2 protein levels and up-regulated those of SOD1. Losartan attenuated astrogliosis, normalized AT1 and AT4 receptor levels, but failed to rescue the cholinergic deficit and the Aß pathology. Given preventively, losartan protected cognitive function, cerebrovascular reactivity, and AT4 receptor levels. Like in aged APP mice, these benefits occurred without a decrease in soluble Aß species or plaque load. We conclude that losartan exerts potent preventive and restorative effects on AD hallmarks, possibly by mitigating AT1-initiated oxidative stress and normalizing memory-related AT4 receptors.


Assuntos
Doença de Alzheimer/complicações , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Circulação Cerebrovascular/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Losartan/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Arginina/análogos & derivados , Arginina/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Endotelina-1/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Losartan/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Mutação/genética
16.
J Neurosci ; 32(14): 4705-15, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22492027

RESUMO

Alzheimer's disease (AD) is now established as a progressive compromise not only of the neurons but also of the cerebral vasculature. Increasing evidence also indicates that cerebrovascular dysfunction may be a key or an aggravating pathogenic factor in AD, emphasizing the importance to properly control this deficit when aiming for effective therapy. Here, we report that simvastatin (3-6 months, 40 mg/kg/d) completely rescued cerebrovascular reactivity, basal endothelial nitric oxide synthesis, and activity-induced neurometabolic and neurovascular coupling in adult (6 months) and aged (12 months) transgenic mice overexpressing the Swedish and Indiana mutations of the human amyloid precursor protein (AD mice). Remarkably, simvastatin fully restored short- and long-term memory in adult, but not in aged AD mice. These beneficial effects occurred without any decreasing effect of simvastatin on brain amyloid-ß (Aß) levels or plaque load. However, in AD mice with recovered memory, protein levels of the learning- and memory-related immediate early genes c-Fos and Egr-1 were normalized or upregulated in hippocampal CA1 neurons, indicative of restored neuronal function. In contrast, the levels of phospholipase A2, enkephalin, PSD-95, synaptophysin, or glutamate NMDA receptor subunit type 2B were either unaltered in AD mice or unaffected by treatment. These findings disclose new sites of action for statins against Aß-induced neuronal and cerebrovascular deficits that could be predictive of therapeutic benefit in AD patients. They further indicate that simvastatin and, possibly, other brain penetrant statins bear high therapeutic promise in early AD and in patients with vascular diseases who are at risk of developing AD.


Assuntos
Envelhecimento/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Transtornos Cerebrovasculares/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Sinvastatina/uso terapêutico , Envelhecimento/fisiologia , Doença de Alzheimer/fisiopatologia , Animais , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , Transtornos Cerebrovasculares/fisiopatologia , Feminino , Humanos , Masculino , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sinvastatina/farmacologia
17.
J Neurosci ; 32(32): 10841-53, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22875919

RESUMO

Delineation of key molecules that act epigenetically to transduce diverse stressors into established patterns of disease would facilitate the advent of preventive and disease-modifying therapeutics for a host of neurological disorders. Herein, we demonstrate that selective overexpression of the stress protein heme oxygenase-1 (HO-1) in astrocytes of novel GFAP.HMOX1 transgenic mice results in subcortical oxidative stress and mitochondrial damage/autophagy; diminished neuronal reelin content (males); induction of Nurr1 and Pitx3 with attendant suppression of their targeting miRNAs, 145 and 133b; increased tyrosine hydroxylase and α-synuclein expression with downregulation of the targeting miR-7b of the latter; augmented dopamine and serotonin levels in basal ganglia; reduced D1 receptor binding in nucleus accumbens; axodendritic pathology and altered hippocampal cytoarchitectonics; impaired neurovascular coupling; attenuated prepulse inhibition (males); and hyperkinetic behavior. The GFAP.HMOX1 neurophenotype bears resemblances to human schizophrenia and other neurodevelopmental conditions and implicates glial HO-1 as a prime transducer of inimical (endogenous and environmental) influences on the development of monoaminergic circuitry. Containment of the glial HO-1 response to noxious stimuli at strategic points of the life cycle may afford novel opportunities for the effective management of human neurodevelopmental and neurodegenerative conditions.


Assuntos
Astrócitos/metabolismo , Encéfalo/patologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Heme Oxigenase-1/metabolismo , Esquizofrenia/genética , Esquizofrenia/patologia , Estimulação Acústica , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Astrócitos/ultraestrutura , Benzamidas/farmacocinética , Benzazepinas/farmacocinética , Monoaminas Biogênicas/metabolismo , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Dopaminérgicos/farmacocinética , Embrião de Mamíferos , Ensaio de Imunoadsorção Enzimática , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/genética , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Heme Oxigenase-1/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Inibição Psicológica , Fluxometria por Laser-Doppler , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , RNA Mensageiro/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Proteína Reelina , Esquizofrenia/fisiopatologia , Filtro Sensorial/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Trítio/farmacocinética , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
18.
Neurobiol Dis ; 54: 59-67, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23454197

RESUMO

Magnetic resonance imaging (MRI) studies have identified aberrant cortical structure in Alzheimer's disease (AD). The association between MRI-derived cortical morphometry measures and ß-amyloid, however, remains poorly understood. In this study, we explored the potential relationship between early alterations in cortical thickness and later stage ß-amyloid deposition, using a novel approach, in a transgenic AD mouse model. We acquired longitudinal anatomical MRI scans from mutant amyloid precursor protein (APP) transgenic mice and age-matched wild-type mice at 1 and 3.5months-of-age, and employed fully-automated image processing methods to derive objective, quantitative measures of cortical thickness on a region-of-interest basis. We also generated 3D quantitative immunohistochemistry (qIHC) volumes of deposited ß-amyloid burden from 18month-old transgenic mice using an automated, production-level process. These studies revealed thinner cortex in most regions in the 1month-old transgenic mice relative to age-matched wild-types, with the exception of the frontal, perirhinal/entorhinal, posterior cingulate, and retrosplenial cortical regions. Between 1 and 3.5months-of-age, the transgenic mice demonstrated stable or increasing cortical thickness, while the wild-type mice showed cortical thinning. Based on data from co-registered 3D MRI and qIHC volumes, we identified an association between abnormal, early, regional cortical thickness change over 2.5months and later ß-amyloid deposition. These observations suggest that the spatio-temporal pattern of early (pre-plaque) alterations in cerebral cortical structure is indicative of regional predisposition to later ß-amyloid pathology in a transgenic AD mouse model.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Córtex Cerebral/patologia , Processamento de Imagem Assistida por Computador/métodos , Doença de Alzheimer/metabolismo , Animais , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Transgênicos
19.
J Neuroinflammation ; 10: 57, 2013 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-23642031

RESUMO

BACKGROUND: Recent evidence suggests that the inducible kinin B1 receptor (B1R) contributes to pathogenic neuroinflammation induced by amyloid-beta (Aß) peptide. The present study aims at identifying the cellular distribution and potentially detrimental role of B1R on cognitive and cerebrovascular functions in a mouse model of Alzheimer's disease (AD). METHODS: Transgenic mice overexpressing a mutated form of the human amyloid precursor protein (APPSwe,Ind, line J20) were treated with a selective and brain penetrant B1R antagonist (SSR240612, 10 mg/kg/day for 5 or 10 weeks) or vehicle. The impact of B1R blockade was measured on i) spatial learning and memory performance in the Morris water maze, ii) cerebral blood flow (CBF) responses to sensory stimulation using laser Doppler flowmetry, and iii) reactivity of isolated cerebral arteries using online videomicroscopy. Aß burden was quantified by ELISA and immunostaining, while other AD landmarks were measured by western blot and immunohistochemistry. RESULTS: B1R protein levels were increased in APP mouse hippocampus and, prominently, in reactive astrocytes surrounding Aß plaques. In APP mice, B1R antagonism with SSR240612 improved spatial learning, memory and normalized protein levels of the memory-related early gene Egr-1 in the dentate gyrus of the hippocampus. B1R antagonism restored sensory-evoked CBF responses, endothelium-dependent dilations, and normalized cerebrovascular protein levels of endothelial nitric oxide synthase and B2R. In addition, SSR240612 reduced (approximately 50%) microglial, but not astroglial, activation, brain levels of soluble Aß1-42, diffuse and dense-core Aß plaques, and it increased protein levels of the Aß brain efflux transporter lipoprotein receptor-related protein-1 in cerebral microvessels. CONCLUSION: These findings show a selective upregulation of astroglial B1R in the APP mouse brain, and the capacity of the B1R antagonist to abrogate amyloidosis, cerebrovascular and memory deficits. Collectively, these findings provide convincing evidence for a role of B1R in AD pathogenesis.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antagonistas de Receptor B1 da Bradicinina , Circulação Cerebrovascular/efeitos dos fármacos , Cognição/efeitos dos fármacos , Dioxóis/uso terapêutico , Sulfonamidas/uso terapêutico , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/genética , Animais , Astrócitos/metabolismo , Western Blotting , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Humanos , Imuno-Histoquímica , Fluxometria por Laser-Doppler , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Placa Amiloide/tratamento farmacológico , Placa Amiloide/patologia , Receptor B1 da Bradicinina/metabolismo
20.
PLoS Genet ; 6(9): e1001118, 2010 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-20862357

RESUMO

Tay-Sachs disease is a severe lysosomal disorder caused by mutations in the HexA gene coding for the α-subunit of lysosomal ß-hexosaminidase A, which converts G(M2) to G(M3) ganglioside. Hexa(-/-) mice, depleted of ß-hexosaminidase A, remain asymptomatic to 1 year of age, because they catabolise G(M2) ganglioside via a lysosomal sialidase into glycolipid G(A2), which is further processed by ß-hexosaminidase B to lactosyl-ceramide, thereby bypassing the ß-hexosaminidase A defect. Since this bypass is not effective in humans, infantile Tay-Sachs disease is fatal in the first years of life. Previously, we identified a novel ganglioside metabolizing sialidase, Neu4, abundantly expressed in mouse brain neurons. Now we demonstrate that mice with targeted disruption of both Neu4 and Hexa genes (Neu4(-/-);Hexa(-/-)) show epileptic seizures with 40% penetrance correlating with polyspike discharges on the cortical electrodes of the electroencephalogram. Single knockout Hexa(-/-) or Neu4(-/-) siblings do not show such symptoms. Further, double-knockout but not single-knockout mice have multiple degenerating neurons in the cortex and hippocampus and multiple layers of cortical neurons accumulating G(M2) ganglioside. Together, our data suggest that the Neu4 block exacerbates the disease in Hexa(-/-) mice, indicating that Neu4 is a modifier gene in the mouse model of Tay-Sachs disease, reducing the disease severity through the metabolic bypass. However, while disease severity in the double mutant is increased, it is not profound suggesting that Neu4 is not the only sialidase contributing to the metabolic bypass in Hexa(-/-) mice.


Assuntos
Epilepsia/enzimologia , Epilepsia/patologia , Lisossomos/enzimologia , Neuraminidase/deficiência , Neurônios/enzimologia , Neurônios/patologia , Cadeia alfa da beta-Hexosaminidase/metabolismo , Animais , Comportamento Animal , Córtex Cerebral/enzimologia , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Córtex Cerebral/ultraestrutura , Eletroencefalografia , Epilepsia/fisiopatologia , Gangliosídeo G(M2)/metabolismo , Técnicas de Inativação de Genes , Hipocampo/enzimologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Hipocampo/ultraestrutura , Aprendizagem/fisiologia , Lisossomos/patologia , Lisossomos/ultraestrutura , Camundongos , Atividade Motora/fisiologia , Neuraminidase/metabolismo , Neurônios/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA