Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Neurobiol Dis ; 176: 105961, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36526091

RESUMO

Diabetic retinopathy, also defined as microvascular complication of diabetes mellitus, affects the entire neurovascular unit with specific aberrations in every compartment. Neurodegeneration, glial activation and vasoregression are observed consistently in models of diabetic retinopathy. However, the order and the severity of these aberrations varies in different models, which is also true in patients. In this study, we analysed rat models of diabetic retinopathy with similar phenotypes to identify key differences in the pathogenesis. For this, we focussed on intercellular junction-associated gene expression, which are important for the communication and homeostasis within the neurovascular unit. Streptozotocin-injected diabetic Wistar rats, methylglyoxal supplemented Wistar rats and polycystin-2 transgenic (PKD) rats were analysed for neuroretinal function, vasoregression and retinal expression of junction-associated proteins. In all three models, neuroretinal impairment and vasoregression were observed, but gene expression profiling of junction-associated proteins demonstrated nearly no overlap between the three models. However, the differently expressed genes were from the main classes of claudins, connexins and integrins in all models. Changes in Rcor1 expression in diabetic rats and Egr1 expression in PKD rats confirmed the differences in upstream transcription factor level between the models. In PKD rats, a possible role for miRNA regulation was observed, indicated by an upregulation of miR-26b-5p, miR-122-5p and miR-300-3p, which was not observed in the other models. In silico allocation of connexins revealed not only differences in regulated subtypes, but also in affected retinal cell types, as well as connexin specific upstream regulators Sox7 and miR-92a-3p. In this study, we demonstrate that, despite their similar phenotype, models for diabetic retinopathy exhibit significant differences in their pathogenic pathways and primarily affected cell types. These results underline the importance for more sensitive diagnostic tools to identify pathogenic clusters in patients as the next step towards a desperately needed personalized therapy.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , MicroRNAs , Ratos , Animais , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Ratos Wistar , Diabetes Mellitus Experimental/metabolismo , Retina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fenótipo , Expressão Gênica
2.
Psychosom Med ; 85(6): 498-506, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37199395

RESUMO

OBJECTIVE: Type 2 diabetes mellitus (T2D) is a chronic disease that is influenced by different factors. The extent to which degree adverse childhood events (ACEs) can modify the potential to development of T2D is still not explored and therefore represents one of the central questions of the childhood escape-late life outcome (DRKS00012419) study. In addition, transgenerational effects were considered in the analyses. METHODS: The study analyzed the association of self-reported traumatic experiences and T2D disease of refugees from East Prussia, who were displaced from their former homeland at the end of the World War II. In addition, an independent sample consisting of participants of first-generation offspring of refugees was analyzed. RESULTS: Of the 242 refugees, all aged between 73 and 93 years, 17.36% reported T2D disease, whereas among the offspring ( n = 272), aged between 47 and 73 years, it was 5.5%, meaning reduced T2D prevalence for both generations compared with the German population of comparable age. In the refugee generation, emotional neglect showed a negative association with development of T2D in later life. In women, separation from close caregivers in childhood showed a negative association with later T2D. In contrast, experiencing emotional abuse in childhood showed a positive association with later T2D. The offspring generation showed no associations of adverse childhood events and reported T2D diagnoses in later life. CONCLUSIONS: Our results demonstrate that individual trauma in childhood is responded to with different mechanisms that can lead to both increased and decreased reported T2D diagnoses in adulthood and thus should by no means be considered in a generalized manner.


Assuntos
Diabetes Mellitus Tipo 2 , Refugiados , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/epidemiologia , Refugiados/psicologia , II Guerra Mundial , Autorrelato , Prevalência
3.
Nature ; 552(7684): 248-252, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29211719

RESUMO

Diabetic retinopathy is an important cause of blindness in adults, and is characterized by progressive loss of vascular cells and slow dissolution of inter-vascular junctions, which result in vascular leakage and retinal oedema. Later stages of the disease are characterized by inflammatory cell infiltration, tissue destruction and neovascularization. Here we identify soluble epoxide hydrolase (sEH) as a key enzyme that initiates pericyte loss and breakdown of endothelial barrier function by generating the diol 19,20-dihydroxydocosapentaenoic acid, derived from docosahexaenoic acid. The expression of sEH and the accumulation of 19,20-dihydroxydocosapentaenoic acid were increased in diabetic mouse retinas and in the retinas and vitreous humour of patients with diabetes. Mechanistically, the diol targeted the cell membrane to alter the localization of cholesterol-binding proteins, and prevented the association of presenilin 1 with N-cadherin and VE-cadherin, thereby compromising pericyte-endothelial cell interactions and inter-endothelial cell junctions. Treating diabetic mice with a specific sEH inhibitor prevented the pericyte loss and vascular permeability that are characteristic of non-proliferative diabetic retinopathy. Conversely, overexpression of sEH in the retinal Müller glial cells of non-diabetic mice resulted in similar vessel abnormalities to those seen in diabetic mice with retinopathy. Thus, increased expression of sEH is a key determinant in the pathogenesis of diabetic retinopathy, and inhibition of sEH can prevent progression of the disease.


Assuntos
Retinopatia Diabética/enzimologia , Retinopatia Diabética/prevenção & controle , Epóxido Hidrolases/antagonistas & inibidores , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Membrana Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Progressão da Doença , Ácidos Docosa-Hexaenoicos/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Ependimogliais , Ácidos Graxos Insaturados/metabolismo , Feminino , Humanos , Junções Intercelulares/efeitos dos fármacos , Junções Intercelulares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Elastase Pancreática/metabolismo , Pericitos/efeitos dos fármacos , Pericitos/patologia , Presenilina-1/metabolismo , Retina/efeitos dos fármacos , Retina/enzimologia , Retina/metabolismo , Retina/patologia , Solubilidade , Corpo Vítreo/metabolismo
4.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768614

RESUMO

Diabetic retinopathy (DR) is characterized by vasoregression and glial activation. miRNA-124 (miR-124) reduces retinal microglial activation and alleviates vasoregression in a neurodegenerative rat model. Our aim was to determine whether miR-124 affects vascular and neural damage in the early diabetic retina. Diabetes was induced in 8-week-old Wistar rats by streptozotocin (STZ) injection. At 16 and 20 weeks, the diabetic rats were intravitreally injected with miR-124 mimic, and retinae were analyzed at 24 weeks. Microvascular damage was identified by evaluating pericyte loss and acellular capillary (AC) formation. Müller glial activation was assessed by glial fibrillary acidic protein (GFAP) immunofluorescence staining. Microglial activation was determined by immunofluorescent staining of ionized calcium-binding adaptor molecule 1 (Iba1) in whole mount retinae. The neuroretinal function was assessed by electroretinography. The expression of inflammation-associated genes was evaluated by qRT-PCR. A wound healing assay was performed to quantitate the mobility of microglial cells. The results showed that miR-124 treatment alleviated diabetic vasoregression by reducing AC formation and pericyte loss. miR-124 blunted Müller glial- and microglial activation in diabetic retinae and ameliorated neuroretinal function. The retinal expression of inflammatory factors including Tnf-α, Il-1ß, Cd74, Ccl2, Ccl3, Vcam1, Tgf-ß1, Arg1, and Il-10 was reduced by miR-124 administration. The elevated mobility of microglia upon high glucose exposure was normalized by miR-124. The expression of the transcription factor PU.1 and lipid raft protein Flot1 was downregulated by miR-124. In rat DR, miR-124 prevents vasoregression and glial activation, improves neuroretinal function, and modulates microglial activation and inflammatory responses.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , MicroRNAs , Ratos , Animais , Retinopatia Diabética/metabolismo , Microglia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Diabetes Mellitus Experimental/metabolismo , Ratos Wistar , Retina/metabolismo
5.
Molecules ; 27(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35408760

RESUMO

Chronic kidney disease (CKD) is a progressive systemic disease, which changes the function and structure of the kidneys irreversibly over months or years. The final common pathological manifestation of chronic kidney disease is renal fibrosis and is characterized by glomerulosclerosis, tubular atrophy, and interstitial fibrosis. In recent years, numerous studies have reported the therapeutic benefits of natural products against modern diseases. Substantial attention has been focused on the biological role of polyphenols, in particular flavonoids, presenting broadly in plants and diets, referring to thousands of plant compounds with a common basic structure. Evidence-based pharmacological data have shown that flavonoids play an important role in preventing and managing CKD and renal fibrosis. These compounds can prevent renal dysfunction and improve renal function by blocking or suppressing deleterious pathways such as oxidative stress and inflammation. In this review, we summarize the function and beneficial properties of common flavonoids for the treatment of CKD and the relative risk factors of CKD.


Assuntos
Flavonoides , Insuficiência Renal Crônica , Fibrose , Flavonoides/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Inflamação/metabolismo , Rim/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo
6.
Circ Res ; 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30929571

RESUMO

RATIONALE: Patients with end-stage renal disease (ESRD) are characterized by increased cardiovascular (CV) and all-cause mortality due to advanced remodeling of the macro- and microvascular beds. OBJECTIVE: The aim of this study was to determine whether retinal microvascular function can predict all-cause and CV mortality in patients with ESRD. METHODS AND RESULTS: In the multicenter prospective observational ISAR (Risk Stratification in End-Stage Renal Disease) study, data on dynamic retinal vessel analysis (DVA) was available in a sub-cohort of 214 dialysis patients (mean age 62.6{plus minus}15.0; 32% female). Microvascular dysfunction was quantified by measuring maximum arteriolar (aMax) and venular dilation (vMax) of retinal vessels in response to flicker light stimulation. During a mean follow-up of 44 months, 55 patients died, including 25 CV and 30 non-CV fatal events. vMax emerged as a strong independent predictor for all-cause mortality. In the Kaplan-Meier analysis, individuals within the lowest tertile of vMax showed significantly shorter three-year survival rates than those within the highest tertile (66.9{plus minus}5.8% vs 92.4{plus minus}3.3%). Uni- and multivariate hazard ratios for all-cause mortality per SD increase of vMax were 0.62 [0.47;0.82] and 0.65[0.47;0.91], respectively. aMax and vMax were able to significantly predict nonfatal and fatal CV events (HR 0.74[0.57;0.97] and 0.78[0.61;0.99], respectively). CONCLUSIONS: Our results provide the first evidence that impaired retinal venular dilation is a strong and independent predictor of all-cause mortality in hemodialyzed ESRD patients. DVA provides added value for prediction of all-cause mortality and may be a novel diagnostic tool to optimize CV risk stratification in ESRD and other high-risk CV cohorts. CLINICAL TRIAL REGISTRATION: NCT01152892.

7.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681723

RESUMO

Microglial activation is implicated in retinal vasoregression of the neurodegenerative ciliopathy-associated disease rat model (i.e., the polycystic kidney disease (PKD) model). microRNA can regulate microglial activation and vascular function, but the effect of microRNA-124 (miR-124) on retinal vasoregression remains unclear. Transgenic PKD and wild-type Sprague Dawley (SD) rats received miR-124 at 8 and 10 weeks of age intravitreally. Retinal glia activation was assessed by immunofluorescent staining and in situ hybridization. Vasoregression and neuroretinal function were evaluated by quantitative retinal morphometry and electroretinography (ERG), respectively. Microglial polarization was determined by immunocytochemistry and qRT-PCR. Microglial motility was examined via transwell migration assays, wound healing assays, and single-cell tracking. Our data showed that miR-124 inhibited glial activation and improved vasoregession, as evidenced by the reduced pericyte loss and decreased acellular capillary formation. In addition, miR-124 improved neuroretinal function. miR-124 shifted microglial polarization in the PKD retina from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype by suppressing TNF-α, IL-1ß, CCL2, CCL3, MHC-II, and IFN-γ and upregulating Arg1 and IL-10. miR-124 also decreased microglial motility in the migration assays. The transcriptional factor of C/EBP-α-PU.1 signaling, suppressed by miR-124 both in vivo (PKD retina) and in vitro (microglial cells), could serve as a key regulator in microglial activation and polarization. Our data illustrate that miR-124 regulates microglial activation and polarization. miR-124 inhibits pericyte loss and thereby alleviates vasoregression and ameliorates neurovascular function.


Assuntos
MicroRNAs/metabolismo , Microglia/citologia , Retina/fisiopatologia , Animais , Antagomirs/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Movimento Celular , Polaridade Celular , Modelos Animais de Doenças , Eletrorretinografia , Regulação da Expressão Gênica , Interleucina-10/genética , Interleucina-10/metabolismo , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Microglia/metabolismo , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/patologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Retina/anatomia & histologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
8.
Cytotherapy ; 22(5): 261-275, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32247542

RESUMO

BACKGROUND AIMS: Diabetic retinopathy (DR) is characterized by a progressive alteration of the retinal microvasculature, arising from microaneurysms to leaky vessels and finally abnormal neovascularization. The hyperglycemia-mediated loss of pericytes is a key event in vessel degeneration causing vascular destabilization. To overcome this, mesenchymal stromal cells (MSCs) have been tested as pericyte replacement in several animal models showing repair and regeneration of DR-damaged vasculature. METHODS: We hypothesized that adipose-derived mesenchymal stromal cells (ASCs) resist high glucose-induced challenges and protect human retinal microvascular endothelial cells (HRMVECs) from glucose-mediated injury. ASCs and HRMVECs were cultured under normal-glucose (NG; 1 g/L) and high-glucose (HG; 4.5 g/L) conditions comparing their phenotype and angiogenic potential. RESULTS: Whereas ASCs were generally unaffected by HG, HG caused a reduction of the angiogenic potential in HRMVEC. Indeed, HG-treated HRMVECs formed fewer vascular tube structures in a basement membrane angiogenesis assay. However, this was not observed in a direct ASC and HRMVEC coculture angiogenesis assay. Increased oxidative stress levels appeared to be linked to the HG-induced reduction of angiogenesis, which could be restored by ASC-conditioned medium and antioxidant treatment. CONCLUSIONS: These findings suggest that ASC resist HG-stress whereas endothelial cell angiogenic capacity is reduced. Thus, ASC may be potentially therapeutically active in DR by restoring angiogenic deficits in retinal endothelial cells by the secretion of proangiogenic factors. However, these data also inquire for a thorough risk assessment about the timing of the ASC-based cell therapy, which can be considered advantageous at early stage of DR, but possibly detrimental at the late neo-angiogenic stage of DR.


Assuntos
Células Endoteliais/metabolismo , Glucose/farmacologia , Células-Tronco Mesenquimais/metabolismo , Neovascularização Patológica/metabolismo , Retina/citologia , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados , Retinopatia Diabética/etiologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/terapia , Glucose/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Hiperglicemia/complicações , Transplante de Células-Tronco Mesenquimais/métodos , Neovascularização Patológica/terapia , Pericitos/metabolismo , Pericitos/patologia , Transfecção
9.
FASEB J ; 33(12): 14668-14679, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31690119

RESUMO

The aim of this study is to investigate the vascular outcome after intravitreal mesenchymal stem cell (MSC) administration in rats without or with damage to the neurovascular unit [transgenic (TGR) rats]. Male Sprague-Dawley (SD) and TGR rats received an intravitreal injection of 2 × 104 rat bone marrow-derived MSCs (BMSCs) or human adipose-derived stem cells (ASCs) at postnatal d 30. After 4 wk, vasculature, neuronal function, and gene expression in the retinas were evaluated using retinal morphometry, electroretinography, immunofluorescence, Western blot, and quantitative PCR. Intravitreal administration of rat BMSCs and human ASCs in both SD and TGR eyes induced cataract, loss of pericytes, and increased formation of acellular capillaries. BMSCs remained in the vitreous cavity and did not migrate into the retinas. Intravitreal administration of BMSCs impacted retinal neuronal function in neither SD nor TGR rats. Retinal glial activation, elevation of IL-1ß, C3, arginase 1, and heat shock protein 90 were detected in BMSC-injected SD rats. Intravitreal administration of MSCs induces cataract, retinal vasoregression, activation of retinal glial cells, and inflammatory response in rat eyes.-Huang, H., Kolibabka, M., Eshwaran, R., Chatterjee, A., Schlotterer, A., Willer, H., Bieback, K., Hammes, H.-P., Feng, Y. Intravitreal injection of mesenchymal stem cells evokes retinal vascular damage in rats.


Assuntos
Catarata/etiologia , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Vasos Retinianos/patologia , Tecido Adiposo/citologia , Animais , Arginase/metabolismo , Catarata/patologia , Movimento Celular , Células Cultivadas , Proteínas de Choque Térmico HSP90/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Interleucina-1beta/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Neuroglia/metabolismo , Neuroglia/patologia , Pericitos/patologia , Ratos , Ratos Sprague-Dawley , Vasos Retinianos/metabolismo
10.
FASEB J ; 33(3): 4141-4153, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30485119

RESUMO

The aim of this study was to evaluate whether damage to the neurovascular unit in diabetes depends on reactive metabolites such as methylglyoxal (MG), and to assess its impact on retinal gene expression. Male Wistar rats were supplied with MG (50 mM) by drinking water and compared with age-matched streptozotocin-diabetic animals and untreated controls. Retinal damage was evaluated for the accumulation of MG-derived advanced glycation end products, changes in hexosamine and PKC pathway activation, microglial activation, vascular alterations (pericyte loss and vasoregression), neuroretinal function assessed by electroretinogram, and neurodegeneration. Retinal gene regulation was studied by microarray analysis, and transcription factor involvement was identified by upstream regulator analysis. Systemic application of MG by drinking water increased retinal MG to levels comparable with diabetic animals. Elevated retinal MG resulted in MG-derived hydroimidazolone modifications in the ganglion cell layer, inner nuclear layer, and outer nuclear layer, a moderate activation of the hexosamine pathway, a pan-retinal activation of microglia, loss of pericytes, increased formation of acellular capillaries, decreased function of bipolar cells, and increased expression of the crystallin gene family. MG mimics important aspects of diabetic retinopathy and plays a pathogenic role in microglial activation, vascular damage, and neuroretinal dysfunction. In response to MG, the retina induces expression of neuroprotective crystallins.-Schlotterer, A., Kolibabka, M., Lin, J., Acunman, K., Dietrich, N., Sticht, C., Fleming, T., Nawroth, P., Hammes, H.-P. Methylglyoxal induces retinopathy-type lesions in the absence of hyperglycemia: studies in a rat model.


Assuntos
Retinopatia Diabética/induzido quimicamente , Hiperglicemia/fisiopatologia , Aldeído Pirúvico/farmacologia , Retina/efeitos dos fármacos , Animais , Capilares/efeitos dos fármacos , Capilares/metabolismo , Capilares/fisiopatologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Retinopatia Diabética/etiologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/fisiopatologia , Modelos Animais de Doenças , Produtos Finais de Glicação Avançada/metabolismo , Hiperglicemia/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/fisiologia , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Pericitos/fisiologia , Aldeído Pirúvico/metabolismo , Ratos , Ratos Wistar , Retina/metabolismo , Retina/fisiopatologia , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/metabolismo , Vasos Retinianos/fisiopatologia , Estreptozocina/farmacologia
11.
J Biol Chem ; 293(13): 4845-4859, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29414769

RESUMO

The enzyme AICAR-transformylase/IMP cyclohydrolase (ATIC) catalyzes the last two steps of purine de novo synthesis. It metabolizes 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), which is an AMP analogue, leading to activation of AMP-activated kinase (AMPK). We investigated whether the AICAR-ATIC pathway plays a role in the high glucose (HG)-mediated DNA damage response and AICAR-mediated AMPK activation, explaining the detrimental effects of glucose on neuronal damage and shortening of the lifespan. HG up-regulated the expression and activity of the Caenorhabditis elegans homologue of ATIC, C55F2.1 (atic-1), and increased the levels of reactive oxygen species and methylglyoxal-derived advanced glycation end products. Overexpression of atic-1 decreased the lifespan and head motility and increased neuronal damage under both standard and HG conditions. Inhibition of atic-1 expression, by RNAi, under HG was associated with increased lifespan and head motility and reduced neuronal damage, reactive oxygen species, and methylglyoxal-derived advanced glycation end product accumulation. This effect was independent of an effect on DNA damage or antioxidant defense pathways, such as superoxide dismutase (sod-3) or glyoxalase-1 (glod-4), but was dependent on AMPK and accumulation of AICAR. Through AMPK, AICAR treatment also reduced the negative effects of HG. The mitochondrial inhibitor rotenone abolished the AICAR/AMPK-induced amelioration of HG effects, pointing to mitochondria as a prime target of the glucotoxic effects in C. elegans We conclude that atic-1 is involved in glucotoxic effects under HG conditions, either by blocked atic-1 expression or via AICAR and AMPK induction.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Glucose/metabolismo , Hidroximetil e Formil Transferases/metabolismo , Complexos Multienzimáticos/metabolismo , Nucleotídeo Desaminases/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Hidroximetil e Formil Transferases/genética , Complexos Multienzimáticos/genética , Neurônios/metabolismo , Nucleotídeo Desaminases/genética , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
12.
Stem Cells ; 36(2): 240-251, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29067740

RESUMO

Long-term diabetes leads to macrovascular and microvascular complication. In diabetic retinopathy (DR), persistent hyperglycemia causes permanent loss of retinal pericytes and aberrant proliferation of microvascular endothelial cells (ECs). Adipose tissue-derived stromal cells (ASCs) may serve to functionally replace retinal pericytes and normalize retinal microvasculature during disease progression. We hypothesized that Notch signaling in ASC underlies regulation and stabilization of dysfunctional retinal microvascular networks such as in DR. ASC prominently and constitutively expressed NOTCH2. Genetic knockdown of NOTCH2 in ASC (SH-NOTCH2) disturbed the formation of vascular networks of human umbilical cord vein endothelial cells both on monolayers of ASC and in organotypical three-dimensional cocultures with ASC. On ASC SH-NOTCH2, cell surface platelet-derived growth factor receptor beta was downregulated which disrupted their migration toward the chemoattractant platelet-derived growth factor beta subunits (PDGF-BB) as well as to conditioned media from EC and bovine retinal EC. This chemoattractant is secreted by pro-angiogenic EC in newly formed microvascular networks to attract pericytes. Intravitreal injected ASC SH-NOTCH2 in oxygen-induced retinopathy mouse eyes did not engraft in the preexisting retinal microvasculature. However, the in vivo pro-angiogenic capacity of ASC SH-NOTCH2 did not differ from controls. In this respect, multifocal electroretinography displayed similar b-wave amplitudes in the avascular zones when either wild type ASC or SH-NOTCH2 ASC were injected. In conclusion, our results indicate that NOTCH2 is essential to support in vitro vasculogenesis via juxtacrine interactions. In contrast, ongoing in vivo angiogenesis is influenced by paracrine signaling of ASC, irrespective of Notch signaling. Stem Cells 2018;36:240-251.


Assuntos
Tecido Adiposo/metabolismo , Pericitos/citologia , Pericitos/metabolismo , Receptor Notch2/metabolismo , Células Estromais/metabolismo , Tecido Adiposo/citologia , Animais , Bovinos , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Immunoblotting , Receptor Notch2/genética , Retina/citologia , Transdução de Sinais/fisiologia , Células Estromais/citologia
13.
Amino Acids ; 51(1): 7-16, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29922921

RESUMO

Carnosinase 1 (CN1) has been postulated to be a susceptibility factor for developing diabetic nephropathy (DN). Although its major substrate, carnosine, is beneficial in rodent models of DN, translation of these findings to humans has been hampered by high CN1 activity in human serum resulting in rapid degradation of carnosine. To overcome this hurdle, we screened a protease-directed small-molecule library for inhibitors of human recombinant CN1. We identified SAN9812 as a potent and highly selective inhibitor of CN1 activity with a Ki of 11 nM. It also inhibited CN1 activity in human serum and serum of transgenic mice-overexpressing human CN1. Subcutaneous administration of 30 mg/kg SAN9812 led to a sustained reduction in circulating CN1 activity in human CN1 transgenic (TG) mice. Simultaneous administration of carnosine and SAN9812 increased carnosine levels in plasma and kidney by up to 100-fold compared to treatment-naïve CN1-overexpressing mice. To our knowledge, this is the first study reporting on a potent and selective CN1 inhibitor with in vivo activity. SAN9812, also called carnostatine, may be used to increase renal carnosine concentration as a potential therapeutic modality for renal diseases linked to glycoxidative conditions.


Assuntos
Carnosina/administração & dosagem , Dipeptidases/antagonistas & inibidores , Descoberta de Drogas , Imidazóis/farmacologia , Propionatos/farmacologia , Inibidores de Proteases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Adulto , Animais , Carnosina/sangue , Dipeptidases/sangue , Dipeptidases/genética , Feminino , Expressão Gênica , Humanos , Imidazóis/química , Injeções Subcutâneas , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Propionatos/química , Inibidores de Proteases/química , Ligação Proteica , Proteínas Recombinantes/sangue , Proteínas Recombinantes/genética , Bibliotecas de Moléculas Pequenas/química , Transgenes
14.
Nucleic Acids Res ; 45(18): 10595-10613, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28977635

RESUMO

The integrity of genome is a prerequisite for healthy life. Indeed, defects in DNA repair have been associated with several human diseases, including tissue-fibrosis, neurodegeneration and cancer. Despite decades of extensive research, the spatio-mechanical processes of double-strand break (DSB)-repair, especially the auxiliary factor(s) that can stimulate accurate and timely repair, have remained elusive. Here, we report an ATM-kinase dependent, unforeseen function of the nuclear isoform of the Receptor for Advanced Glycation End-products (nRAGE) in DSB-repair. RAGE is phosphorylated at Serine376 and Serine389 by the ATM kinase and is recruited to the site of DNA-DSBs via an early DNA damage response. nRAGE preferentially co-localized with the MRE11 nuclease subunit of the MRN complex and orchestrates its nucleolytic activity to the ATR kinase signaling. This promotes efficient RPA2S4-S8 and CHK1S345 phosphorylation and thereby prevents cellular senescence, IPF and carcinoma formation. Accordingly, loss of RAGE causatively linked to perpetual DSBs signaling, cellular senescence and fibrosis. Importantly, in a mouse model of idiopathic pulmonary fibrosis (RAGE-/-), reconstitution of RAGE efficiently restored DSB-repair and reversed pathological anomalies. Collectively, this study identifies nRAGE as a master regulator of DSB-repair, the absence of which orchestrates persistent DSB signaling to senescence, tissue-fibrosis and oncogenesis.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Reparo do DNA , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Núcleo Celular/enzimologia , Núcleo Celular/metabolismo , Senescência Celular , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Homeostase , Pulmão/fisiopatologia , Proteína Homóloga a MRE11 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibrose Pulmonar/genética , Fibrose Pulmonar/fisiopatologia , Receptor para Produtos Finais de Glicação Avançada/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
15.
Diabetologia ; 61(1): 29-38, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28942458

RESUMO

Diabetic retinopathy remains a relevant clinical problem. In parallel with diagnostic and therapeutic improvements, the role of glycaemia and reactive metabolites causing cell stress and biochemical abnormalities as treatment targets needs continuous re-evaluation. Furthermore, the basic mechanisms of physiological angiogenesis, remodelling and pruning give important clues about the origins of vasoregression during the very early stages of diabetic retinopathy and can be modelled in animals. This review summarises evidence supporting a role for the neurovascular unit-composed of neuronal, glial and vascular cells-as a responder to the biochemical changes imposed by reactive metabolites and high glucose. Normoglycaemic animal models developing retinal degeneration, provide valuable information about common pathways downstream of progressive neuronal damage that induce vasoregression, as in diabetic models. These models can serve to assess novel treatments addressing the entire neurovascular unit for the benefit of early diabetic retinopathy.


Assuntos
Retinopatia Diabética/sangue , Retinopatia Diabética/metabolismo , Hiperglicemia/sangue , Hiperglicemia/metabolismo , Animais , Humanos , Estresse Oxidativo/fisiologia
16.
Diabetologia ; 61(11): 2412-2421, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30097694

RESUMO

AIMS/HYPOTHESIS: Linagliptin has protective effects on the retinal neurovascular unit but, in proliferative retinopathy, dipeptidyl peptidase 4 (DPP-4) inhibition could be detrimental. The aim of this study was to assess the effect of linagliptin on ischaemia-induced neovascularisation of the retina. METHODS: C57BL/6J and glucagon-like peptide 1 (GLP-1) receptor (Glp1r)-/- mice were subjected to a model of oxygen-induced retinopathy (OIR). Both strains were subcutaneously treated with linagliptin from postnatal days 12 to 16. Non-injected OIR and non-exposed mice served as controls. Capillary proliferations and systemic levels of active GLP-1 were quantified. The effects of linagliptin on vascular endothelial growth factor (VEGF)-induced downstream signalling were assessed in human umbilical vein endothelial cells (HUVECs) using western blot for retinal phosphorylated extracellular signal-regulated kinase (ERK)1/2 and retinal gene expression analyses. RESULTS: Linagliptin treatment led to an increase in active GLP-1 and a decreased number of neovascular nuclei in OIR mice vs controls (-30%, p < 0.05). As the reduction in neovascularisation was similar in both C57BL/6J and Glp1r-/- mice, the anti-angiogenic effects of linagliptin were independent of GLP-1R status. The expression of Vegf (also known as Vegfa) and Hif1a was increased in C57BL/6J OIR mice upon linagliptin treatment (three- vs 1.5-fold, p < 0.05, p < 0.01, respectively). In HUVECs, linagliptin inhibited VEGF-induced increases in mitogen-activated protein kinase (MAPK)/ERK (-67%, p < 0.001) and MAPK/c-Jun N-terminal kinase (JNK) (-13%, p < 0.05) pathway activities. In the retinas of C57BL/6J mice, p-ERK1/2 levels were significantly reduced upon linagliptin treatment (-47%, p < 0.05). CONCLUSIONS/INTERPRETATION: Systemic treatment with linagliptin demonstrated GLP-1R-independent anti-angiogenic effects mediated by an inhibition of VEGF receptor downstream signalling. The specific effects of linagliptin on diabetic retinopathy are of potential benefit for individuals with diabetes, independent of metabolic effects.


Assuntos
Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Linagliptina/uso terapêutico , Oxigênio/efeitos adversos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Retinopatia Diabética/etiologia , Modelos Animais de Doenças , Peptídeo 1 Semelhante ao Glucagon/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Retina/metabolismo , Retina/patologia , Neovascularização Retiniana/tratamento farmacológico , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator A de Crescimento do Endotélio Vascular/genética
17.
Diabetologia ; 61(11): 2371-2385, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30151615

RESUMO

AIMS/HYPOTHESIS: The immunomodulatory capacity of adipose tissue-derived stromal cells (ASCs) is relevant for next-generation cell therapies that aim to reverse tissue dysfunction such as that caused by diabetes. Pericyte dropout from retinal capillaries underlies diabetic retinopathy and the subsequent aberrant angiogenesis. METHODS: We investigated the pericytic function of ASCs after intravitreal injection of ASCs in mice with retinopathy of prematurity as a model for clinical diabetic retinopathy. In addition, ASCs influence their environment by paracrine signalling. For this, we assessed the immunomodulatory capacity of conditioned medium from cultured ASCs (ASC-Cme) on high glucose (HG)-stimulated bovine retinal endothelial cells (BRECs). RESULTS: ASCs augmented and stabilised retinal angiogenesis and co-localised with capillaries at a pericyte-specific position. This indicates that cultured ASCs exert juxtacrine signalling in retinal microvessels. ASC-Cme alleviated HG-induced oxidative stress and its subsequent upregulation of downstream targets in an NF-κB dependent fashion in cultured BRECs. Functionally, monocyte adhesion to the monolayers of activated BRECs was also decreased by treatment with ASC-Cme and correlated with a decline in expression of adhesion-related genes such as SELE, ICAM1 and VCAM1. CONCLUSIONS/INTERPRETATION: The ability of ASC-Cme to immunomodulate HG-challenged BRECs is related to the length of time for which ASCs were preconditioned in HG medium. Conditioned medium from ASCs that had been chronically exposed to HG medium was able to normalise the HG-challenged BRECs to normal glucose levels. In contrast, conditioned medium from ASCs that had been exposed to HG medium for a shorter time did not have this effect. Our results show that the manner of HG preconditioning of ASCs dictates their immunoregulatory properties and thus the potential outcome of treatment of diabetic retinopathy.


Assuntos
Tecido Adiposo/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Glucose/farmacologia , Pericitos/citologia , Pericitos/efeitos dos fármacos , Células Estromais/citologia , Animais , Bovinos , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Retinopatia Diabética/metabolismo , Selectina E/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Retina/citologia , Transdução de Sinais/efeitos dos fármacos , Molécula 1 de Adesão de Célula Vascular/metabolismo , Cicatrização/efeitos dos fármacos
18.
Kidney Int ; 94(5): 937-950, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30190172

RESUMO

Diabetic nephropathy correlates more closely to defective mitochondria and increased oxidative stress in the kidney than to hyperglycemia. A key driving factor of diabetic nephropathy is angiotensin II acting via the G-protein-coupled cell membrane type 1 receptor. The present study aimed to investigate the role of the angiotensin II type 2 receptor (AT2R) at the early stages of diabetic nephropathy. Using receptor binding studies and immunohistochemistry we found that the mitochondria in renal tubules contain high-affinity AT2Rs. Increased renal mitochondrial AT2R density by transgenic overexpression was associated with reduced superoxide production of isolated mitochondria from non-diabetic rats. Streptozotocin-induced diabetes (28 days) caused a drop in the ATP/oxygen ratio and an increase in the superoxide production of isolated renal mitochondria from wild-type diabetic rats. This correlated with changes in the renal expression profile and increased tubular epithelial cell proliferation. AT2R overexpression in tubular epithelial cells inhibited all diabetes-induced renal changes including a drop in mitochondrial bioenergetics efficiency, a rise in mitochondrial superoxide production, metabolic reprogramming, and increased proliferation. Thus, AT2Rs translocate to mitochondria and can contribute to reno-protective effects at early stages of diabetes. Hence, targeted AT2R overexpression in renal cells may open new avenues to develop novel types of drugs preventing diabetic nephropathy.


Assuntos
Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/prevenção & controle , Túbulos Renais/fisiologia , Mitocôndrias/fisiologia , Receptor Tipo 2 de Angiotensina/fisiologia , Trifosfato de Adenosina/biossíntese , Animais , Proliferação de Células , Perfilação da Expressão Gênica , Masculino , Mitocôndrias/química , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 2 de Angiotensina/análise , Estreptozocina
19.
Diabetologia ; 60(7): 1354-1358, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28321468

RESUMO

AIMS/HYPOTHESIS: The aim of this study was to evaluate damage to the neurovascular unit in a mouse model of hyperglycaemic memory. METHODS: A streptozotocin-induced mouse model of diabetes (C57BL/6J background) received insulin-releasing pellets and pancreatic islet-cell transplantation. Damage to the neurovascular unit was studied by quantitative retinal morphometry for microvascular changes and microarray analysis, with subsequent functional annotation clustering, for changes of the retinal genome. RESULTS: Sustained microvascular damage was confirmed by persistent loss of pericytes in the retinal vasculature (PC/mm2): compared with healthy controls (1981 ± 404 PC/mm2), the pericyte coverage of the retinal vasculature was significantly reduced in diabetic mice (1571 ± 383 PC/mm2, p < 0.001) and transplanted mice (1606 ± 268 PC/mm2, p < 0.001). Genes meeting the criteria for hyperglycaemic memory were attributed to the cytoskeletal and nuclear cell compartments of the neurovascular unit. The most prominent regulated genes in the cytoskeletal compartment were Ddx51, Fgd4, Pdlim7, Utp23, Cep57, Csrp3, Eml5, Fhl3, Map1a, Mapk1ip1, Mnda, Neil2, Parp2, Myl12b, Dynll1, Stag3 and Sntg2, and in the nuclear compartment were Ddx51, Utp23, Mnda, Kmt2e, Nr6a1, Parp2, Cdk8, Srsf1 and Zfp326. CONCLUSIONS/INTERPRETATION: We demonstrated that changes in gene expression and microvascular damage persist after euglycaemic re-entry, indicating memory. DATA AVAILABILITY: The datasets generated during and/or analysed during the current study are available in the GEO repository, GSE87433, www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=idmbysgctluxviv&acc=GSE87433 .


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Hiperglicemia/fisiopatologia , Retina/fisiopatologia , Animais , Glicemia/análise , Núcleo Celular/metabolismo , Biologia Computacional , Citoesqueleto/metabolismo , Retinopatia Diabética/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Transplante das Ilhotas Pancreáticas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação , Pericitos/citologia , Pericitos/patologia , Retina/patologia , Vasos Retinianos/metabolismo
20.
Cell Physiol Biochem ; 39(2): 573-83, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27395777

RESUMO

BACKGROUND/AIMS: Hypoxia induces angiogenesis while hyperoxia promotes vasoregression in the retina. We investigated herein the effect of prolonged hyperoxia on retinal angiogenesis and the underlying mechanism in an oxygen-induced retinopathy (OIR) model. METHODS: Vascular morphology was quantified in whole-mount retina from the mice subjected to the conventional OIR model (c-OIR) or the OIR model with prolonged hyperoxia (p-OIR). Expressions of genes related to angiogenesis were determined by real-time PCR. RESULTS: p-OIR retinas showed few intraretinal neovascular tufts at the border of avascular zones, lacking preretinal neovascularization, whereas c-OIR retinas had numerous preretinal neovascularizations. p-OIR retinas demonstrated outgrowth of capillaries in the deep layers despite persistent hyperoxia and possess a larger avascular zone compared with the c-OIR retinas. The capillaries in the p-OIR retinas were well-formed in contrast to those in the c-OIR retinas. p-OIR retinas expressed significantly higher TNFα (∼4 fold) than c-OIR retinas. The expression of vascular endothelial growth factor, Erythropoietin, Angiopoietin 1 and 2 remained unchanged. CONCLUSION: Our data demonstrate that TNFα transcription is increased in hyperoxia-promoted retinal angiogenesis, implicating it, in association with low VEGF levels, as a possible proponent in retinal angiogenesis under hyperoxia.


Assuntos
Hiperóxia , Neovascularização Retiniana/genética , Transcrição Gênica , Fator de Necrose Tumoral alfa/genética , Regulação para Cima , Angiopoietina-1/genética , Angiopoietina-1/metabolismo , Angiopoietina-2/genética , Angiopoietina-2/metabolismo , Animais , Eritropoetina/genética , Eritropoetina/metabolismo , Imunofluorescência , Regulação da Expressão Gênica , Hipóxia , Camundongos Endogâmicos C57BL , Neovascularização Retiniana/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA