RESUMO
Approximately 30% of cancer patients experience kidney complications, which hinder optimal cancer management, imposing a burden on patients' quality of life and the healthcare system. The etiology of kidney complications in cancer patients is often attributed to nephrotoxic oncological therapies. However, the direct impact of cancer on kidney health is underestimated, as most nephrotoxic oncological therapies have been studied in animal models that do not have cancer. Our previous study demonstrated that advanced lung cancer adversely alters kidney physiology and function, and exacerbates chemotherapy-induced nephrotoxicity, indicating lung cancer-kidney crosstalk. This study examines whether this phenomenon is specific to the employed cancer model. Female and male mice of various strains were injected with different cell lines representing human and mouse lung cancer, breast cancer, and melanoma, and their kidney tissues were analyzed for toxicity and fibrosis. The impact of cancer on the kidney varied by cancer type. Breast cancer and specific subtypes of lung cancer, including KRAS- and EGFR-mutant cancer, pathologically altered kidney physiology and function in a manner dependent on the metastatic potential of the cell line. This was independent of mouse strain, sex, and cancer cell line origin. Moreover, tumor DNA was not detected in the renal tissue, excluding metastases to the kidney as a causative factor for the observed pathological alterations. Lewis lung carcinoma and B16 melanoma did not cause nephrotoxicity, regardless of the tumor size. Our results confirm cancer-kidney crosstalk in specific cancer types and highlight gaps in understanding the risk of renal complications in cancer patients. In the era of precision medicine, further research is essential to identify at-risk oncology populations, enabling early detection and management of renal complications.
RESUMO
AIMS: Gene therapies to induce cardiomyocyte (CM) cell cycle re-entry have shown a potential to treat subacute ischaemic heart failure (IHF) but have not been tested in the more relevant setting of chronic IHF. Our group recently showed that polycistronic non-integrating lentivirus encoding Cdk1/CyclinB1 and Cdk4/CyclinD1 (TNNT2-4Fpolycistronic-NIL) is effective in inducing CM cell cycle re-entry and ameliorating subacute IHF models and preventing the subsequent IHF-induced congestions in the liver, kidneys, and lungs in rats and pigs. Here, we aim to test the long-term efficacy of TNNT2-4Fpolycistronic-NIL in a rat model of chronic IHF, a setting that differs pathophysiologically from subacute IHF and has greater clinical relevance. METHODS AND RESULTS: Rats were subjected to a 2-h coronary occlusion followed by reperfusion; 4 weeks later, rats were injected intramyocardially with either TNNT2-4Fpolycistronic-NIL or LacZ-NIL. Four months post-viral injection, TNNT2-4Fpolycistronic-NIL-treated rats showed a significant reduction in scar size and a significant improvement in left ventricular (LV) systolic cardiac function but not in the LV dilatation associated with chronic IHF. A mitosis reporter system developed in our lab showed significant induction of CM mitotic activity in TNNT2-4Fpolycistronic-NIL-treated rats. CONCLUSION: This study demonstrates, for the first time, that TNNT2-4Fpolycistronic-NIL gene therapy induces CM cell cycle re-entry in chronic IHF and improves LV function, and that this salubrious effect is sustained for at least 4 months. Given the high prevalence of chronic IHF, these results have significant clinical implications for developing a novel treatment for this deadly disease.