Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Semin Liver Dis ; 42(3): 233-249, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36001995

RESUMO

Nonalcoholic liver disease is a component of metabolic syndrome associated with obesity, insulin resistance, and hyperlipidemia. Excessive alcohol consumption may accelerate the progression of steatosis, steatohepatitis, and fibrosis. While simple steatosis is considered a benign condition, nonalcoholic steatohepatitis with inflammation and fibrosis may progress to cirrhosis, liver failure, and hepatocellular cancer. Studies in rodent experimental models and primary cell cultures have demonstrated several common cellular and molecular mechanisms in the pathogenesis and regression of liver fibrosis. Chronic injury and death of hepatocytes cause the recruitment of myeloid cells, secretion of inflammatory and fibrogenic cytokines, and activation of myofibroblasts, resulting in liver fibrosis. In this review, we discuss the role of metabolically injured hepatocytes in the pathogenesis of nonalcoholic steatohepatitis and alcohol-associated liver disease. Specifically, the role of chemokine production and de novo lipogenesis in the development of steatotic hepatocytes and the pathways of steatosis regulation are discussed.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Cirrose Hepática/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/complicações
2.
Hepatology ; 69(6): 2471-2488, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30748020

RESUMO

Nonalcoholic fatty liver disease (NAFLD) has become a worldwide epidemic. A large and growing unmet therapeutic need has inspired numerous studies in the field. Integrating the published genomic data available in the Gene Expression Omnibus (GEO) with NAFLD samples from rodents, we discovered that interferon regulatory factor 6 (IRF6) is significantly downregulated in high-fat diet (HFD)-induced fatty liver. In the current study, we identified IRF6 in hepatocytes as a protective factor in liver steatosis (LS). During HFD challenge, hepatic Irf6 was suppressed by promoter hypermethylation. Severity of HFD-induced LS was exacerbated in hepatocyte-specific Irf6 knockout mice, whereas hepatocyte-specific transgenic mice overexpressing Irf6 (IRF6-HTG) exhibited alleviated steatosis and metabolic disorder in response to HFD feeding. Mechanistic studies in vitro demonstrated that hepatocyte IRF6 directly binds to the promoter of the peroxisome proliferator-activated receptor γ (PPARγ) gene and subsequently halts the transcription of Pparγ and its target genes (e.g., genes that regulate lipogenesis and lipid acid uptake) under physiological conditions. Conclusion: Irf6 is downregulated by promoter hypermethylation upon metabolic stimulus exposure, which fail to inhibit Pparγ and its targets, driving abnormalities of lipid metabolism.


Assuntos
Regulação da Expressão Gênica , Fatores Reguladores de Interferon/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , PPAR gama/genética , Animais , Metilação de DNA/genética , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Regulação para Baixo , Hepatócitos/citologia , Humanos , Fatores Reguladores de Interferon/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Distribuição Aleatória , Sensibilidade e Especificidade
4.
Am J Respir Crit Care Med ; 189(4): 475-81, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24450377

RESUMO

RATIONALE: Early diagnosis and treatment of tuberculous meningitis saves lives, but current laboratory diagnostic tests lack sensitivity. OBJECTIVES: We investigated whether the detection of intracellular bacteria by a modified Ziehl-Neelsen stain and early secretory antigen target (ESAT)-6 in cerebrospinal fluid leukocytes improves tuberculous meningitis diagnosis. METHODS: Cerebrospinal fluid specimens from patients with suspected tuberculous meningitis were stained by conventional Ziehl-Neelsen stain, a modified Ziehl-Neelsen stain involving cytospin slides with Triton processing, and an ESAT-6 immunocytochemical stain. Acid-fast bacteria and ESAT-6-expressing leukocytes were detected by microscopy. All tests were performed prospectively in a central laboratory by experienced technicians masked to the patients' final diagnosis. MEASUREMENTS AND MAIN RESULTS: Two hundred and eighty patients with suspected tuberculous meningitis were enrolled. Thirty-seven had Mycobacterium tuberculosis cultured from cerebrospinal fluid; 40 had a microbiologically confirmed alternative diagnosis; the rest had probable or possible tuberculous meningitis according to published criteria. Against a clinical diagnostic gold standard the sensitivity of conventional Ziehl-Neelsen stain was 3.3% (95% confidence interval, 1.6-6.7%), compared with 82.9% (95% confidence interval, 77.4-87.3%) for modified Ziehl-Neelsen stain and 75.1% (95% confidence interval, 68.8-80.6%) for ESAT-6 immunostain. Intracellular bacteria were seen in 87.8% of the slides positive by the modified Ziehl-Neelsen stain. The specificity of modified Ziehl-Neelsen and ESAT-6 stain was 85.0% (95% confidence interval, 69.4-93.8%) and 90.0% (95% confidence interval, 75.4-96.7%), respectively. CONCLUSIONS: Enhanced bacterial detection by simple modification of the Ziehl-Neelsen stain and an ESAT-6 intracellular stain improve the laboratory diagnosis of tuberculous meningitis.


Assuntos
Antígenos de Bactérias/líquido cefalorraquidiano , Proteínas de Bactérias/líquido cefalorraquidiano , Leucócitos/microbiologia , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Meníngea/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/líquido cefalorraquidiano , Criança , Pré-Escolar , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/imunologia , Estudos Prospectivos , Sensibilidade e Especificidade , Coloração e Rotulagem , Tuberculose Meníngea/líquido cefalorraquidiano , Adulto Jovem
5.
Trends Cancer ; 10(1): 38-51, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839973

RESUMO

Acute leukemia is characterized by clonal heterogeneity that contributes to poor drug responses in patients. Despite treatment advances, the occurrence of relapse remains a major barrier to achieving cures as current therapeutic approaches are inadequate to effectively prevent or overcome resistance. Given that only a few genetic mutations are associated with relapse in acute leukemia patients, there is a growing focus on 'non-genetic' mechanisms that affect the hallmarks of cancer to allow leukemic cells to survive post therapy. In this review, we provide an overview of the therapeutic landscape in acute leukemias. Importantly, we discuss non-genetic mechanisms exploited by leukemic cells to promote their survival after treatment. Last, we present current strategies to prevent or overcome drug resistance in this disease.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Recidiva , Resistência a Medicamentos
6.
Sci Transl Med ; 16(734): eade7347, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38354227

RESUMO

Nonalcoholic fatty liver (NAFL) remains relatively benign, but high-risk to end-stage liver diseases become highly prevalent when it progresses into nonalcoholic steatohepatitis (NASH). Our current understanding of the development of NAFL to NASH remains insufficient. In this study, we revealed MAP kinase (MAPK) activation as the most notable molecular signature associated with NASH progression across multiple species. Furthermore, we identified suppressor of IKKε (SIKE) as a conserved and potent negative controller of MAPK activation. Hepatocyte-specific overexpression of Sike prevented NASH progression in diet- and toxin-induced mouse NASH models. Mechanistically, SIKE directly interacted with TGF-ß-activated kinase 1 (TAK1) and TAK1-binding protein 2 (TAB2) to interrupt their binding and subsequent TAK1-MAPK signaling activation. We found that indobufen markedly up-regulated SIKE expression and effectively improved NASH features in mice and macaques. These findings identify SIKE as a MAPK suppressor that prevents NASH progression and provide proof-of-concept evidence for targeting the SIKE-TAK1 axis as a potential NASH therapy.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais/fisiologia , Hepatócitos/metabolismo , Perfilação da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fígado/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
7.
Science ; 383(6682): eadi5798, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38301010

RESUMO

Increasing use of covalent and noncovalent inhibitors of Bruton's tyrosine kinase (BTK) has elucidated a series of acquired drug-resistant BTK mutations in patients with B cell malignancies. Here we identify inhibitor resistance mutations in BTK with distinct enzymatic activities, including some that impair BTK enzymatic activity while imparting novel protein-protein interactions that sustain B cell receptor (BCR) signaling. Furthermore, we describe a clinical-stage BTK and IKZF1/3 degrader, NX-2127, that can bind and proteasomally degrade each mutant BTK proteoform, resulting in potent blockade of BCR signaling. Treatment of chronic lymphocytic leukemia with NX-2127 achieves >80% degradation of BTK in patients and demonstrates proof-of-concept therapeutic benefit. These data reveal an oncogenic scaffold function of mutant BTK that confers resistance across clinically approved BTK inhibitors but is overcome by BTK degradation in patients.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Resistencia a Medicamentos Antineoplásicos , Fator de Transcrição Ikaros , Leucemia Linfocítica Crônica de Células B , Inibidores de Proteínas Quinases , Proteólise , Humanos , Tirosina Quinase da Agamaglobulinemia/genética , Tirosina Quinase da Agamaglobulinemia/metabolismo , Fator de Transcrição Ikaros/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Mutação , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais , Proteólise/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos
8.
Cancer Cell ; 41(1): 164-180.e8, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563682

RESUMO

Therapy resistance is a major challenge in the treatment of cancer. Here, we performed CRISPR-Cas9 screens across a broad range of therapies used in acute myeloid leukemia to identify genomic determinants of drug response. Our screens uncover a selective dependency on RNA splicing factors whose loss preferentially enhances response to the BCL2 inhibitor venetoclax. Loss of the splicing factor RBM10 augments response to venetoclax in leukemia yet is completely dispensable for normal hematopoiesis. Combined RBM10 and BCL2 inhibition leads to mis-splicing and inactivation of the inhibitor of apoptosis XIAP and downregulation of BCL2A1, an anti-apoptotic protein implicated in venetoclax resistance. Inhibition of splicing kinase families CLKs (CDC-like kinases) and DYRKs (dual-specificity tyrosine-regulated kinases) leads to aberrant splicing of key splicing and apoptotic factors that synergize with venetoclax, and overcomes resistance to BCL2 inhibition. Our findings underscore the importance of splicing in modulating response to therapies and provide a strategy to improve venetoclax-based treatments.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Linhagem Celular Tumoral , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Splicing de RNA/genética , Leucemia Mieloide Aguda/genética , Proteínas Tirosina Quinases , Apoptose/genética , Proteínas de Ligação a RNA/genética
9.
Sci Adv ; 8(3): eabj8357, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35061527

RESUMO

The production of noncanonical mRNA transcripts is associated with cell transformation. Driven by our previous findings on the sensitivity of T cell acute lymphoblastic leukemia (T-ALL) cells to SF3B1 inhibitors, we identified that SF3B1 inhibition blocks T-ALL growth in vivo with no notable associated toxicity. We also revealed protein stabilization of the U2 complex component SF3B1 via deubiquitination. Our studies showed that SF3B1 inhibition perturbs exon skipping, leading to nonsense-mediated decay and diminished levels of DNA damage response-related transcripts, such as the serine/threonine kinase CHEK2, and impaired DNA damage response. We also identified that SF3B1 inhibition leads to a general decrease in R-loop formation. We further demonstrate that clinically used SF3B1 inhibitors synergize with CHEK2 inhibitors and chemotherapeutic drugs to block leukemia growth. Our study provides the proof of principle for posttranslational regulation of splicing components and associated roles and therapeutic implications for the U2 complex in T cell leukemia.


Assuntos
Leucemia de Células T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Homeostase , Humanos , Mutação , Fosfoproteínas/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo
10.
Sci Adv ; 8(49): eabq8437, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36490346

RESUMO

Dysregulation of kinase signaling pathways favors tumor cell survival and therapy resistance in cancer. Here, we reveal a posttranslational regulation of kinase signaling and nuclear receptor activity via deubiquitination in T cell acute lymphoblastic leukemia (T-ALL). We observed that the ubiquitin-specific protease 11 (USP11) is highly expressed and associates with poor prognosis in T-ALL. USP11 ablation inhibits leukemia progression in vivo, sparing normal hematopoiesis. USP11 forms a complex with USP7 to deubiquitinate the oncogenic lymphocyte cell-specific protein-tyrosine kinase (LCK) and enhance its activity. Impairment of LCK activity leads to increased glucocorticoid receptor (GR) expression and glucocorticoids sensitivity. Genetic knockout of USP7 improved the antileukemic efficacy of glucocorticoids in vivo. The transcriptional activation of GR target genes is orchestrated by the deubiquitinase activity and mediated via an increase in enhancer-promoter interaction intensity. Our data unveil how dysregulated deubiquitination controls leukemia survival and drug resistance, suggesting previously unidentified therapeutic combinations toward targeting leukemia.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Linhagem Celular Tumoral , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/uso terapêutico , Peptidase 7 Específica de Ubiquitina/metabolismo
11.
Genome Biol ; 21(1): 247, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32933554

RESUMO

BACKGROUND: The three-dimensional genome organization is critical for gene regulation and can malfunction in diseases like cancer. As a key regulator of genome organization, CCCTC-binding factor (CTCF) has been characterized as a DNA-binding protein with important functions in maintaining the topological structure of chromatin and inducing DNA looping. Among the prolific binding sites in the genome, several events with altered CTCF occupancy have been reported as associated with effects in physiology or disease. However, hitherto there is no comprehensive survey of genome-wide CTCF binding patterns across different human cancers. RESULTS: To dissect functions of CTCF binding, we systematically analyze over 700 CTCF ChIP-seq profiles across human tissues and cancers and identify cancer-specific CTCF binding patterns in six cancer types. We show that cancer-specific lost and gained CTCF binding events are associated with altered chromatin interactions, partially with DNA methylation changes, and rarely with sequence mutations. While lost bindings primarily occur near gene promoters, most gained CTCF binding events exhibit enhancer activities and are induced by oncogenic transcription factors. We validate these findings in T cell acute lymphoblastic leukemia cell lines and patient samples and show that oncogenic NOTCH1 induces specific CTCF binding and they cooperatively activate expression of target genes, indicating transcriptional condensation phenomena. CONCLUSIONS: Specific CTCF binding events occur in human cancers. Cancer-specific CTCF binding can be induced by other transcription factors to regulate oncogenic gene expression. Our results substantiate CTCF binding alteration as a functional epigenomic signature of cancer.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Metilação de DNA , Humanos , Oncogenes , Receptor Notch1/metabolismo
12.
Cancer Discov ; 10(9): 1388-1409, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32444465

RESUMO

Splicing alterations are common in diseases such as cancer, where mutations in splicing factor genes are frequently responsible for aberrant splicing. Here we present an alternative mechanism for splicing regulation in T-cell acute lymphoblastic leukemia (T-ALL) that involves posttranslational stabilization of the splicing machinery via deubiquitination. We demonstrate there are extensive exon skipping changes in disease, affecting proteasomal subunits, cell-cycle regulators, and the RNA machinery. We present that the serine/arginine-rich splicing factors (SRSF), controlling exon skipping, are critical for leukemia cell survival. The ubiquitin-specific peptidase 7 (USP7) regulates SRSF6 protein levels via active deubiquitination, and USP7 inhibition alters the exon skipping pattern and blocks T-ALL growth. The splicing inhibitor H3B-8800 affects splicing of proteasomal transcripts and proteasome activity and acts synergistically with proteasome inhibitors in inhibiting T-ALL growth. Our study provides the proof-of-principle for regulation of splicing factors via deubiquitination and suggests new therapeutic modalities in T-ALL. SIGNIFICANCE: Our study provides a new proof-of-principle for posttranslational regulation of splicing factors independently of mutations in aggressive T-cell leukemia. It further suggests a new drug combination of splicing and proteasomal inhibitors, a concept that might apply to other diseases with or without mutations affecting the splicing machinery.This article is highlighted in the In This Issue feature, p. 1241.


Assuntos
Processamento Alternativo/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Fosfoproteínas/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Processamento Alternativo/efeitos dos fármacos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Sinergismo Farmacológico , Éxons/genética , Humanos , Células Jurkat , Masculino , Camundongos , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Estudo de Prova de Conceito , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Leukemia ; 32(7): 1587-1597, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29467488

RESUMO

Deregulation of key regulators of histone modification is important in the initiation and progression of human leukemia. Acidic leucine-rich nuclear phosphoprotein-32A (ANP32A) participates in histone acetylation and its role in acute myeloid leukemia remains unclear. Here we observed significant upregulation of ANP32A in primary AML cells, which was essential for AML cell proliferation, survival, and colony formation. Integrative analysis of the genome-wide histone H3 acetylation and gene expression demonstrated that ANP32A deficiency reduced histone H3 acetylation, in accordance with changes in gene expression. Notably, significant histone H3 acetylation enrichment was associated with mRNA changes in lipid-related genes, including APOC1, PCSK9, P2RX1, and LPPR3. Indeed, over-expression of APOC1 partially compensated the proliferation-defect phenotype in ANP32A deficient AML cells while APOC1 knockdown alone mimicked the effect of ANP32A deficiency. Collectively, our data indicate that ANP32A is a novel regulator of histone H3 acetylation and promotes leukemogenesis.


Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Acetilação , Animais , Apolipoproteína C-I/metabolismo , Apoptose , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Regulação Leucêmica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Metabolismo dos Lipídeos/genética , Camundongos , Proteínas Nucleares , RNA Mensageiro/genética , Proteínas de Ligação a RNA , Ensaio Tumoral de Célula-Tronco
14.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 25(5): 1537-1543, 2017 Oct.
Artigo em Zh | MEDLINE | ID: mdl-29070140

RESUMO

OBJECTIVE: To study the function of ZNF300 in the megakaryocytes differentiation and proliferation. METHODS: Public data analysis of ZNF300 expression and megakaryocyte culture were used to reveal the correlation of ZNF300 expression with leukemia and megakaryocyte differetniation; ZNF300 overexpression was mediated by lentiviral or retroviral infection, and the differentiation and proliferation of K562 cells and primary mouse bone marrow cells to magekaryocytes were measured by flow cytometry, MTT assay and colony-forming test; the ZNF300 subcellular localization was tested by separating cytosolic and nuclear extracts combined with Western blotting. The dual-luciferase assay and ChIP-qPCR were used to study ZNF300 target gene. RESULTS: ZNF300 expression upregulation correlated with megakaryoyte differentiation; over-expression of ZNF300 promoted CD41 and CD61 expression, inhibited cell cycle progress, and could reduce colony-forming unit. The ZNF300 locolized in nuclear and regulated C-MYC expression. CONCLUSION: ZNF300 promotes megakaryocyte differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Megacariócitos/efeitos dos fármacos , Proteínas Repressoras/fisiologia , Animais , Hematopoese , Humanos , Células K562 , Camundongos , Regulação para Cima
15.
Cell Host Microbe ; 22(1): 86-98.e4, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28704656

RESUMO

The transcription factors p65 and IRF3 play key roles in the induction of cellular antiviral responses. Phosphorylation of p65 and IRF3 is required for their activity and constitutes a key checkpoint. Here we report that viral infection induced upregulation of INKIT, an inhibitor for NF-κB and IRF3 that restricted innate antiviral responses by blocking phosphorylation of p65 and IRF3. INKIT overexpression inhibited virus-induced phosphorylation of p65 and IRF3 and expression of downstream genes. In contrast, knockdown or knockout of INKIT had the opposite effect: Inkit-/- mice produced elevated levels of type I interferons and proinflammatory cytokines and were more resistant to lethal viral infection compared to wild-type. INKIT interacted with IKKα/ß and TBK1/IKKɛ, impairing the recruitment and phosphorylation of p65 and IRF3. Viral infection induced IKK-mediated phosphorylation of INKIT at Ser58, resulting in its dissociation from the IKKs. Our findings thus uncover INKIT as a regulator of innate antiviral responses.


Assuntos
Antivirais/farmacologia , Fator Regulador 3 de Interferon/metabolismo , NF-kappa B/metabolismo , Viroses/imunologia , Animais , Citocinas/metabolismo , Células HEK293 , Células HeLa , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/patogenicidade , Humanos , Quinase I-kappa B/metabolismo , Imunidade Inata/fisiologia , Fator Regulador 3 de Interferon/genética , Interferon Tipo I/metabolismo , Lentivirus/genética , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Vírus Sendai/imunologia , Vírus Sendai/patogenicidade , Transdução de Sinais , Análise de Sobrevida , Células THP-1 , Vesiculovirus/imunologia , Vesiculovirus/patogenicidade , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA