Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Aquac Nutr ; 2024: 8767751, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362562

RESUMO

The present study was an 8-week feeding trial investigating the effects of lysine and threonine supplementation in vegetable-based diets on growth, antioxidative capacity, and gut microbiota of juvenile redclaw crayfish, Cherax quadricarinatus (initial weight 11.52 ± 0.23 g). The lysine and threonine were supplemented to formulate five isonitrogenous (37%) and isolipidic (9%) diets containing 0% (control), 0.2% lysine (L0.2), 0.2% threonine (T0.2), 0.4% lysine (L0.4), and 0.4% threonine (T0.4), respectively. Compared to the control, weight gain rate (WGR) and specific growth rate (SGR) of C. quadricarinatus significantly increased with increasing dietary lysine and threonine supplementation from 0.2% to 0.4% (P < 0.05). Hepatopancreas trypsin activity significantly increased with increasing levels of lysine and threonine in diets (P < 0.05). However, the pepsin, lipase, and amylase activities were not affected by dietary levels of lysine and threonine (P > 0.05). Compared with the control, crayfish in T0.4 and L0.4 showed significantly higher glutathione peroxidase (GPx) activity (P < 0.05), lower alanine aminotransferase (ALT) activity, and lower malondialdehyde (MDA) content (P < 0.05). Supplementation with 0.4% lysine significantly changed the composition of the gut microbiota (P < 0.05), which showed a significantly increased relative abundance of Proteobacteria and decreased Firmicutes, Actinomycetes, and Pontomyces (P < 0.05). The PICRUSt analysis demonstrated that the abundance of the metabolism and cellular processes pathways in the L0.4 group were markedly decreased compared with the control (P < 0.05). Meanwhile, a tighter interaction of the microbiota community in crayfish was observed in the T0.4 experimental group. In conclusion, these results suggested that dietary supplementation with 0.4% threonine could significantly promote growth and improve microbial health in juvenile C. quadricarinatus.

2.
Br J Nutr ; 130(6): 933-943, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36573369

RESUMO

Se is an essential trace element associated with animal growth and antioxidant and metabolic processes. However, whether Se, especially organic Se with higher bioavailability, can alleviate the adverse effects of low salinity stress on marine economic crustacean species has not been investigated. Accordingly, juvenile Pacific white shrimp (Litopenaeus vannamei) were reared in two culture conditions (low and standard salinity) fed diets supplemented with increasing levels of l-selenomethionine (0·41, 0·84 and 1·14 mg/kg Se) for 56 d, resulting in four treatments: 0·41 mg/kg under standard seawater (salinity 31) and 0·41, 0·84 and 1·14 mg/kg Se under low salinity (salinity 3). The diet containing 0·84 mg/kg Se significantly improved the survival and weight gain of shrimp under low salinity stress and enhanced the antioxidant capacity of the hepatopancreas. The increased numbers of B and R cells may be a passive change in hepatopancreas histology in the 1·14 mg/kg Se group. Transcriptomic analysis found that l-selenomethionine was involved in the regulatory pathways of energy metabolism, retinol metabolism and steroid hormones. In conclusion, dietary supplementation with 0·84 mg/kg Se (twice the recommended level) effectively alleviated the effects of low salinity stress on L. vannamei by regulating antioxidant capacity, hormone regulation and energy metabolism.


Assuntos
Antioxidantes , Selênio , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Selênio/farmacologia , Transcriptoma , Hepatopâncreas/metabolismo , Selenometionina/farmacologia , Estresse Fisiológico , Suplementos Nutricionais/análise , Dieta , Estresse Salino , Ração Animal/análise
3.
Aquac Nutr ; 2023: 8627246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457792

RESUMO

This study evaluated the effects of defatted superworm (Zophobas atratus) larvae meal (DBWLM) as an alternative protein ingredient for juvenile Pacific white shrimp (Penaeus vannamei). Six isonitrogenous and isolipidic experimental diets were characterized by replacing 0%, 15%, 30%, 45%, 60%, and 75% fish meal (DBWLM0, DBWLM15, DBWLM30, DBWLM45, DBWLM60, and DBWLM75, respectively) with DBWLM on a w/w basis and feeding them to juvenile shrimp (0.34 ± 0.04 g) for 56 days. The results showed that the replacement of up to 75% fish meal by DBWLM had no negative effect on the growth performance of P. vannamei. The survival of shrimp in the DBWLM30 group was the highest, and the weight gain, specific growth rate, feed conversion ratio, condition factor, and apparent digestibility coefficients of dry matter in the DBWLM15 group were the highest. The substitution of DBWLM for fish meal significantly increased the elasticity of flesh, improved the total content of umami amino acids in flesh (aspartic acid, glutamic acid, glycine, and alanine), promoted lipid metabolism in shrimp, and reduced serum lipid levels. With the increase in DBWLM level, serum acid phosphatase, alkaline phosphatase activity, and intestinal inflammatory gene expression (IGF-1 and IL-6) were inhibited, malondialdehyde content decreased, and total antioxidant capacity level and superoxide dismutase activity increased significantly. Histological sections of the hepatopancreas showed that when 60% or more fish meal was replaced, the hepatopancreas atrophied and had irregular lumen distortion, but the cell membrane was not damaged. Microbiome analysis showed that the abundance of Bacteroidetes and Firmicutes increased and the abundance of Proteobacteria decreased in the DBWLM replacement group, and it was rich in "metabolism"-related functional pathways. It is worth mentioning that the expression of amino-acid-related enzymes was upregulated in the DBWLM15 and DBWLM30 groups, and the DBWLM75 group inhibited the biosynthesis of steroids and hormones. To conclude, the replacement of 15%-45% fish meal with DBWLM can result in better growth and immune status, improved meat elasticity, and reduced inflammation in P. vannamei. However, it is recommended that the replacement level should not exceed 60%, otherwise it will cause atrophy of hepatopancreas cells.

4.
Aquac Nutr ; 2023: 6925320, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860976

RESUMO

The optimal supplementation of lipid nutrients in the diet showed crucial physiological functions in gonadal development and maturation in adult female aquatic animals. Four isonitrogenous and isolipidic diets with no extra lecithin supplementation (control), 2% soybean lecithin (SL), egg yolk lecithin (EL), or krill oil (KO) supplementation were formulated for Cherax quadricarinatus (72.32 ± 3.58 g). Ovary development and physiological characteristics of crayfish were evaluated after a 10-week feeding trial. The results indicated that SL, EL, or KO supplementation all significantly increased the gonadosomatic index, especially in the KO group. Crayfish fed the diet with SL showed the highest hepatosomatic index compared with those fed the other experimental diets. KO was more efficient than SL and EL in promoting triacylglycerol and cholesterol deposition in the ovary and hepatopancreas but also showed the lowest concentration of low-density lipoprotein cholesterol in the serum. KO significantly increased yolk granule deposition and accelerated oocyte maturation than other experimental groups. Furthermore, dietary phospholipids significantly enhanced the gonad-stimulating hormone concentration in the ovary and reduced the secretion of gonad-inhibiting hormones in the eyestalk. KO supplementation also significantly improved organic antioxidant capacity. From the ovarian lipidomics results, phosphatidylcholine and phosphatidylethanolamine are two main glycerophospholipids that respond to different dietary phospholipids. Polyunsaturated fatty acids (especially C18:2n-6, C18:3n-3, C20:4n-6, C20:5n-3, and C22:6n-3) were pivotal participants during ovarian development of crayfish regardless of lipid type. Combined with the ovarian transcriptome, the best positive function of KO was due to activated steroid hormone biosynthesis, sphingolipid signaling, retinol metabolism, lipolysis, starch and sucrose metabolism, vitamin digestion and absorption, and pancreatic secretion. As a consequence, dietary supplementation with SL, EL, or KO all improved the ovarian development quality of C. quadricarinatus, especially KO, which was the optimum choice for promoting ovary development in adult female C. quadricarinatus.

5.
Proc Biol Sci ; 288(1957): 20211239, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34403631

RESUMO

Turtle eggs containing embryos are exceedingly rare in the fossil record. Here, we provide the first description and taxonomic identification, to our knowledge, of a fossilized embryonic turtle preserved in an egg, a fossil recovered from the Upper Cretaceous Xiaguan Formation of Henan Province, China. The specimen is attributed to the Nanhsiungchelyidae (Pan-Trionychia), an extinct group of large terrestrial turtles (possibly the species Yuchelys nanyangensis). The egg is rigid, spherical, and is one of the largest and thickest shelled Mesozoic turtle eggs known. Importantly, this specimen allowed identification of other nanhsiungchelyid egg clutches and comparison to those of Adocidae, as Nanhsiungchelyidae and Adocidae form the basal extinct clade Adocusia of the Pan-Trionychia (includes living soft-shelled turtles). Despite the differences in habitat adaptations, nanhsiungchelyids (terrestrial) and adocids (aquatic) shared several reproductive traits, including relatively thick eggshells, medium size clutches and relatively large eggs, which may be primitive for trionychoids (including Adocusia and Carrettochelyidae). The unusually thick calcareous eggshell of nanhsiungchelyids compared to those of all other turtles (including adocids) may be related to a nesting style adaptation to an extremely harsh environment.


Assuntos
Tartarugas , Animais , China , Ecossistema , Casca de Ovo , Fósseis
6.
Fish Shellfish Immunol ; 102: 400-411, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32371256

RESUMO

Butyrate is a fermentation byproduct of gut microbiota and is susceptible to chronic oxidative stress. This study investigates the mitigative effects of sodium butyrate (SBT) on growth inhibition and intestinal damage induced by glycinin in juvenile Chinese mitten crab (Eriocheir sinensis). All four experimental diets containing 80 g/kg glycinin were formulated with 0, 10, 20 and 40 g/kg SBT respectively. There was no glycinin or SBT in the control diet. Juvenile crabs (0.33 ± 0.01g) were respectively fed with these five diets for eight weeks. The diets with 10 and 20 g/kg SBT significantly improved the survival and weight gain of the crabs compared with those in the 0 g/kg SBT group, and showed no difference with the control group. The crabs fed diets containing glycinin without SBT had lower glutathione and glutathione peroxidase activities but higher malondialdehyde in the intestine than those in the control group. Moreover, dietary glycinin decreased the lysozyme and phenoloxidase activities and improved the level of histamine in the intestine compared with the control group, while the supplementation of SBT counteracted these negative effects. The addition of SBT could also restore the impaired immunity and morphological structure of the intestine. Dietary SBT could increase the mRNA expression of antimicrobial peptides genes (anti-lipopolysaccharide factor 1 and 2) and decrease the content of pro-inflammatory factor TNF-α. The SBT could restore the intestinal microbial community disorganized by glycinin. The abundance of pathogenic bacteria (Aeromonas, Vibrio and Pseudomonas) decreased significantly and the potential probiotic bacteria (Bacillus, Lactobacillus, Chitinibacter and Dysgonomonas) increased significantly in the 10 g/kg SBT group. This study suggests that sodium butyrate supplementation can mitigate the negative effects induced by glycinin such as growth inhibition, intestinal inflammation and reduction of beneficial flora in the gut.


Assuntos
Braquiúros/imunologia , Ácido Butírico/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Globulinas/efeitos adversos , Imunidade Inata/efeitos dos fármacos , Proteínas de Soja/efeitos adversos , Ração Animal/análise , Animais , Braquiúros/efeitos dos fármacos , Braquiúros/crescimento & desenvolvimento , Braquiúros/microbiologia , Ácido Butírico/administração & dosagem , Dieta/efeitos adversos , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga
7.
Br J Nutr ; 122(7): 734-744, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32124713

RESUMO

An 8-week feeding experiment was conducted to investigate the effects of dl-methionine (Met) supplementation in a low-fishmeal diet on growth, key gene expressions of amino acid transporters and target of rapamycin (TOR) pathway in juvenile cobia, Rachycentron canadum. Seven isonitrogenous and isolipidic diets were formulated, containing 0·72, 0·90, 1·00, 1·24, 1·41, 1·63 and 1·86 % Met. Weight gain and specific growth rates increased gradually with Met levels of up to 1·24 % and then decreased gradually. In dorsal muscle, mRNA levels of ASCT2 in the 1·00 % Met group were significantly up-regulated compared with 0·72, 1·63, and 1·86 %. The insulin-like growth factor-I (IGF-I) mRNA levels in the dorsal muscle of fish fed 1·00 and 1·24 % Met were higher than those in fish fed other Met levels. In addition, fish fed 1·24 % Met showed the highest mRNA levels of TOR and phosphorylation of TOR on Ser2448. The phosphorylation of ribosomal p70-S6 kinase (S6K) on Ser371 in the dorsal muscle of fish fed 1·86 % Met was higher than those in the 0·72 % group. In conclusion, straight broken-line analysis of weight gain rate against dietary Met level indicates that the optimal Met requirement for juvenile cobia is 1·24 % (of DM, or 2·71 % dietary protein). Met supplementation in a low-fishmeal diet increased cobia growth via a mechanism that can partly be attributed to Met's ability to affect the TOR/S6K signalling pathway by enhancing ASCT2 and IGF-I transcription in cobia dorsal muscle.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Ração Animal , Produtos Pesqueiros , Peixes/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Metionina/administração & dosagem , Músculos/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sistema ASC de Transporte de Aminoácidos/genética , Animais , Glicemia/análise , Peixes/crescimento & desenvolvimento , Expressão Gênica , Insulina/sangue , Fígado/metabolismo , Transdução de Sinais , Sirolimo/metabolismo
8.
Fish Shellfish Immunol ; 84: 269-279, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30300740

RESUMO

This study investigates the effects of two soybean antigens (glycinin and ß-conglycinin) as an antinutritional substance in the diet on the growth, digestive ability, intestinal health and microbiota of juvenile Chinese mitten crabs (Eriocheir sinensis). The isonitrogenous and isolipidic diets contained two soybean antigens at two levels each (70 and 140 g/kg ß-conglycinin, 80 and 160 g/kg glycinin) and a control diet without ß-conglycinin or glycinin supplementation, and were used respectively to feed juvenile E. sinensis for seven weeks. Dietary inclusion of either glycinin or ß-conglycinin significantly reduced crab survival and weight gain. The crabs fed diets containing soybean antigens had higher malondialdehyde concentrations and lower catalase activities in the intestine than those in the control. The activities of trypsin and amylase in the intestine were suppressed by dietary ß-conglycinin and glycinin. Dietary glycinin or ß-conglycinin impaired the immunity and morphological structure of intestine, especially the peritrophic membrane. The mRNA expression of constitutive and inducible immune responsive genes (lipopolysaccharide-induced TNF-α factor and interleukin-2 enhancer-binding factor 2) increased while the mRNA expression of the main genes related to the structural integrity peritrophic membrane (peritrophin-like gene and peritrophic 2) significantly decreased in the groups with soybean antigen addition. Soybean antigen could also change the intestinal microbial community. The abundance of pathogenic bacteria (Ochrobactrum, Burkholderia and Pseudomonas) increased significantly in both soybean antigen groups. Although pathogenic bacteria Vibrio were up-regulated in the glycinin group, the abundance of Dysgonomonas that degraded lignocellulose and ameliorated the gut environment decreased in the glycinin group. This study indicates that existence of soybean antigens (glycinin or ß-conglycinin) could induce gut inflammation, reshape the community of gut microbiota, and cause digestive dysfunction, ultimately leading to impaired growth in crabs.


Assuntos
Antígenos de Plantas/administração & dosagem , Braquiúros/efeitos dos fármacos , Braquiúros/fisiologia , Digestão/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Globulinas/administração & dosagem , Globulinas/metabolismo , Proteínas de Armazenamento de Sementes/administração & dosagem , Proteínas de Soja/administração & dosagem , Proteínas de Soja/metabolismo , Ração Animal/análise , Animais , Antígenos de Plantas/metabolismo , Braquiúros/crescimento & desenvolvimento , Dieta , Suplementos Nutricionais/análise , Digestão/fisiologia , Relação Dose-Resposta a Droga , Intestinos/efeitos dos fármacos , Intestinos/fisiologia , Distribuição Aleatória , Proteínas de Armazenamento de Sementes/metabolismo
9.
Fish Shellfish Immunol ; 93: 463-473, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31374316

RESUMO

To investigate the effects of arginine (Arg) on the growth, antioxidant capacity, immunity and disease resistance of juvenile Chinese mitten crab, three diets containing Arg levels at 1.72% (control), 2.73% and 3.72% were formulated and fed to Chinese mitten crab (0.22 ±â€¯0.03 g) for eight weeks. The weight gain, ecdysterone and growth hormone in the serum, relative expression of insulin-like growth factor 2 in the hepatopancreas significantly increased in crabs fed the 2.73% and 3.72% Arg diets. The protein and lipid contents significantly increased in crabs fed the 3.72% Arg diet. The feed conversion ratios in crabs fed the diets with Arg additions were lower than in the control. Arg supplementation also enhanced the antioxidative capacity by increasing the activities of superoxide dismutase, catalase and the relative expression of Kelch-like ECH-associated protein 1 gene in the hepatopancreas, which subsequently decreased malondialdehyde content in the hepatopancreas. Besides, Arg also decreased nitric oxide content in the serum and the activity of nitric oxide synthetase in the hepatopancreas. The relative mRNA levels of crustin, relish, lysozyme and cryptocyanin genes were significantly upregulated by Arg supplementation. The activities of acid phosphatase and alkaline phosphatase in the serum significantly increased in crabs fed the 3.72% Arg diet than those in the control. Similarly, the relative mRNA levels of crustin, cryptocyanin and proPO genes were significantly upregulated in crabs fed the 2.73% Arg diet after lipopolysaccharide challenge, and in crabs fed the 3.72% Arg diet after the Poly (I:C) challenge. The crabs fed the 2.73% and 3.72% Arg diets had higher survival rate after bacterial infection than those fed the control diet. This study indicates that the addition of Arg to the diet at 2.7-3.7% can improve the growth, survival, antioxidant capacity, immunity and disease resistance in juvenile Chinese mitten crab.


Assuntos
Arginina/metabolismo , Braquiúros/imunologia , Resistência à Doença/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Ração Animal/análise , Animais , Arginina/administração & dosagem , Braquiúros/efeitos dos fármacos , Braquiúros/crescimento & desenvolvimento , Braquiúros/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Imunidade Inata/imunologia , Distribuição Aleatória
11.
Nature ; 475(7357): 465-70, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21796204

RESUMO

Archaeopteryx is widely accepted as being the most basal bird, and accordingly it is regarded as central to understanding avialan origins; however, recent discoveries of derived maniraptorans have weakened the avialan status of Archaeopteryx. Here we report a new Archaeopteryx-like theropod from China. This find further demonstrates that many features formerly regarded as being diagnostic of Avialae, including long and robust forelimbs, actually characterize the more inclusive group Paraves (composed of the avialans and the deinonychosaurs). Notably, adding the new taxon into a comprehensive phylogenetic analysis shifts Archaeopteryx to the Deinonychosauria. Despite only tentative statistical support, this result challenges the centrality of Archaeopteryx in the transition to birds. If this new phylogenetic hypothesis can be confirmed by further investigation, current assumptions regarding the avialan ancestral condition will need to be re-evaluated.


Assuntos
Dinossauros/classificação , Fósseis , Animais , China , Dinossauros/anatomia & histologia , Especificidade da Espécie
12.
Nature ; 459(7249): 940-4, 2009 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-19536256

RESUMO

Theropods have traditionally been assumed to have lost manual digits from the lateral side inward, which differs from the bilateral reduction pattern seen in other tetrapod groups. This unusual reduction pattern is clearly present in basal theropods, and has also been inferred in non-avian tetanurans based on identification of their three digits as the medial ones of the hand (I-II-III). This contradicts the many developmental studies indicating II-III-IV identities for the three manual digits of the only extant tetanurans, the birds. Here we report a new basal ceratosaur from the Oxfordian stage of the Jurassic period of China (156-161 million years ago), representing the first known Asian ceratosaur and the only known beaked, herbivorous Jurassic theropod. Most significantly, this taxon possesses a strongly reduced manual digit I, documenting a complex pattern of digital reduction within the Theropoda. Comparisons among theropod hands show that the three manual digits of basal tetanurans are similar in many metacarpal features to digits II-III-IV, but in phalangeal features to digits I-II-III, of more basal theropods. Given II-III-IV identities in avians, the simplest interpretation is that these identities were shared by all tetanurans. The transition to tetanurans involved complex changes in the hand including a shift in digit identities, with ceratosaurs displaying an intermediate condition.


Assuntos
Evolução Biológica , Aves/anatomia & histologia , Dinossauros/anatomia & histologia , Extremidades/anatomia & histologia , Fósseis , Animais , China , Filogenia
13.
Proc Natl Acad Sci U S A ; 108(6): 2338-42, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21262806

RESUMO

Digital reduction is a striking evolutionary phenomenon that is clearly exemplified in theropod dinosaurs by the functionally didactyl manus of tyrannosaurids, the flight-adapted manus of birds (Aves), and the tridactyl but digit II-dominated manus of alvarezsauroids. The enlargement of manual digit II in alvarezsauroids and the concurrent reduction of the lateral digits have been interpreted as adaptations for digging, although no detailed biomechanical analysis of hand function has so far been carried out for this group. In the derived alvarezsauroid clade Parvicursorinae, the lateral digits are so small as to be presumably vestigial. Here we report a new alvarezsauroid, Linhenykus monodactylus gen. et sp. nov., based on a specimen from the Upper Cretaceous Wulansuhai Formation of Inner Mongolia, China. Cladistic analysis identifies Linhenykus as the most basal parvicursorine, and digit II of the manus retains a slender morphology and other primitive features. However, Linhenykus is also highly apomorphic in exhibiting the most extreme reduction of the lateral manual digits seen in any alvarezsauroid. Phalanges are retained only on the most medial digit (digit II), making Linhenykus the only known functionally monodactyl nonavian dinosaur. Other parvicursorines are more primitive in retaining a tridactyl manus but more derived in that digit II is highly robust and shows other apomorphic features in both of its phalanges. The unexpected combination of features seen in the hand of Linhenykus points to a complex mosaic pattern of manual evolution in alvarezsauroids, with loss of the presumably vestigial outer digits being decoupled from change in the form of digit II.


Assuntos
Evolução Biológica , Membro Anterior/anatomia & histologia , Membro Anterior/fisiologia , Fósseis , Répteis/anatomia & histologia , Répteis/fisiologia , Animais
14.
BMC Ecol Evol ; 24(1): 46, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627692

RESUMO

BACKGROUND: Tooth replacement patterns of early-diverging ornithischians, which are important for understanding the evolution of the highly specialized dental systems in hadrosaurid and ceratopsid dinosaurs, are poorly known. The early-diverging neornithischian Jeholosaurus, a small, bipedal herbivorous dinosaur from the Early Cretaceous Jehol Biota, is an important taxon for understanding ornithischian dental evolution, but its dental morphology was only briefly described previously and its tooth replacement is poorly known. RESULTS: CT scanning of six specimens representing different ontogenetic stages of Jeholosaurus reveals significant new information regarding the dental system of Jeholosaurus, including one or two replacement teeth in nearly all alveoli, relatively complete tooth resorption, and an increase in the numbers of alveoli and replacement teeth during ontogeny. Reconstructions of Zahnreihen indicate that the replacement pattern of the maxillary dentition is similar to that of the dentary dentition but with a cyclical difference. The maxillary tooth replacement rate in Jeholosaurus is probably 46 days, which is faster than that of most other early-diverging ornithischians. During the ontogeny of Jeholosaurus, the premaxillary tooth replacement rate slows from 25 days to 33 days with similar daily dentine formation. CONCLUSIONS: The tooth replacement rate exhibits a decreasing trend with ontogeny, as in Alligator. In a phylogenetic context, fast tooth replacement and multi-generation replacement teeth have evolved at least twice independently in Ornithopoda, and our analyses suggest that the early-diverging members of the major ornithischian clades exhibit different tooth replacement patterns as an adaption to herbivory.


Assuntos
Dinossauros , Dente , Animais , Filogenia , Dinossauros/anatomia & histologia , Herbivoria , Fósseis , Dente/diagnóstico por imagem , Dente/cirurgia , Dente/anatomia & histologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-38364652

RESUMO

This study explored the role of myo-inositol in alleviating the low salinity stress of White Shrimp (Litopenaeus vannamei). Juvenile shrimp (0.4 ± 0.02 g) in low salinity (salinity 3) water were fed diets with myo-inositol levels of 0, 272, 518, 1020 and 1950 mg/kg (crude protein is 36.82 %, crude lipid is 7.58 %), fed shrimp in seawater at a salinity of 25 were fed a 0 mg/kg myo-inositol diet as a control (Ctrl). The experiment was carried out in tanks (50 L) with satiety feeding, and the experiment lasted for 6 weeks. After sampling, the serum was used to measure immune function, the hepatopancreas homogenate was used to measure the antioxidant capacity and hepatopancreas damage state, the hepatopancreas was used for transcriptomics analysis, and the gills were used for qPCR to measure osmotic pressure regulation. The results showed that the final weight and survival of the shrimp in the 1020 mg/kg group increased significantly compared with those in the other low salinity groups, but the final weight and biomass increase were significantly lower than those in the Ctrl group. Dietary myo-inositol improved the antioxidant capacity of shrimp under low salinity. B-cell hyperplasia and hepatic duct damage were observed in the hepatopancreas in the 0 mg/kg group. The results of transcriptome analysis showed that myo-inositol could participate in the osmotic pressure regulation of shrimp by regulating carbohydrate metabolism, amino acid metabolism, lipid metabolism and other related genes. Myo-inositol significantly affected the expression of related genes in ion transporter and G protein-coupled receptor-mediated pathways. This study demonstrated that myo-inositol can not only act as an osmotic pressure effector and participate in the osmolar regulation of shrimp through the phosphatidylinositol signaling pathway mediated by G protein-coupled receptors but also relieve low salinity stress by mediating physiological pathways such as immunity, antioxidation, and metabolism in shrimp. The binomial regression analysis of biomass increases and survival showed that the appropriate amount of myo-inositol in the L. vannamei diet was 862.50-1275.00 mg/kg under low salinity.


Assuntos
Inositol , Penaeidae , Salinidade , Animais , Inositol/farmacologia , Penaeidae/efeitos dos fármacos , Penaeidae/metabolismo , Penaeidae/crescimento & desenvolvimento , Biomarcadores/metabolismo , Hepatopâncreas/metabolismo , Hepatopâncreas/efeitos dos fármacos , Estresse Fisiológico
16.
J Hazard Mater ; 469: 133930, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452673

RESUMO

Dinotefuran, a neonicotinoid insecticide, may impact nontarget organisms such as Decapoda P. vannamei shrimp with nervous systems similar to insects. Exposing shrimp to low dinotefuran concentrations (6, 60, and 600 µg/L) for 21 days affected growth, hepatosomatic index, and survival. Biomarkers erythromycin-N-demethylase, alanine aminotransferase, and catalase increased in all exposed groups, while glutathione S-transferase is the opposite; aminopyrin-N-demethylase, malondialdehyde, and aspartate aminotransferase increased at 60 and 600 µg/L. Concentration-dependent effects on gut microbiota altered the abundance of bacterial groups, increased potentially pathogenic and oxidative stress-resistant phenotypes, and decreased biofilm formation. Gram-positive/negative microbiota changed significantly. Metabolite differences between the exposed and control groups were identified using mass spectrometry and KEGG pathway enrichment. N-acetylcystathionine showed potential as a reliable dinotefuran metabolic marker. Weighted correlation network analysis (WGCNA) results indicated high connectivity of cruecdysone in the metabolite network and significant enrichment at 600 µg/L dinotefuran. The WGCNA results revealed a highly significant negative correlation between two key metabolites, caldine and indican, and the gut microbiota within co-expression modules. Overall, the risk of dinotefuran exposure to non-target organisms in aquatic environments still requires further attention.


Assuntos
Microbioma Gastrointestinal , Guanidinas , Nitrocompostos , Penaeidae , Animais , Penaeidae/genética , Penaeidae/metabolismo , Penaeidae/microbiologia , Neonicotinoides/toxicidade , Neonicotinoides/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Oxirredutases N-Desmetilantes/farmacologia
17.
Chemosphere ; 358: 142150, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679174

RESUMO

Cycloxaprid, a new neonicotinoid pesticide, poses ecological risks, particularly in aquatic environments, due to its unique action and environmental dispersal. This study investigated the ecotoxicological effects of various concentrations of cycloxaprid on Penaeus vannamei over 28 days. High cycloxaprid levels significantly altered shrimp physiology, as shown by changes in the hepatosomatic index and fattening. Indicators of oxidative stress, such as increased serum hemocyanin, respiratory burst, and nitric oxide, as well as decreased phenol oxidase activity, were observed. Additionally, elevated activities of lactate dehydrogenase, succinate dehydrogenase, and isocitrate dehydrogenase indicated disrupted energy metabolism in the hepatopancreas. Notably, analyses of the nervous system revealed marked disturbances in neural signaling, as evidenced by elevated acetylcholine, octopamine, and acetylcholinesterase levels. Transcriptomic analysis highlighted significant effects on gene expression and metabolic processes in the hepatopancreas and nervous system. This study demonstrated that cycloxaprid disrupts neural signaling and oxidative balance in P. vannamei, potentially affecting its growth, and provides key insights into its biochemical and transcriptomic toxicity in aquatic systems.


Assuntos
Penaeidae , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Penaeidae/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Neonicotinoides/toxicidade , Piridinas/toxicidade , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/metabolismo , Inseticidas/toxicidade , Compostos Heterocíclicos com 3 Anéis
18.
J Hazard Mater ; 474: 134787, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38823101

RESUMO

The developmental toxicity effects of neonicotinoid pesticides such as clothianidin have not been fully explored in agricultural applications. This is particularly noteworthy because such pesticides significantly impact the survival rates of invertebrates, with arthropod larvae being particularly vulnerable. This study aimed to address this research gap by specifically investigating the toxicological effects of clothianidin on the developmental stages of the larvae of the economically important aquaculture species Penaeus vannamei. In these experiments, shrimp eggs were exposed to seawater containing different concentrations of clothianidin beginning at N1, and each phase was observed and analyzed to determine its toxic impact on larval development. These results revealed that clothianidin induces an increase in deformity rates and triggers abnormal cell apoptosis. It also significantly reduced survival rates and markedly decreased body length and heart rate in the later stages of larval development (P3). Transcriptomic analysis revealed disruptions in larval DNA integrity, protein synthesis, and signal transduction caused by clothianidin. To survive prolonged exposure, larvae may attempt to maintain their viability by repairing cell structures and enhancing signal transduction mechanisms. This study offers the first empirical evidence of the toxicity of clothianidin to arthropod larvae, underscoring the impact of environmental pollution on aquatic health.


Assuntos
Guanidinas , Inseticidas , Larva , Neonicotinoides , Penaeidae , Tiazóis , Animais , Larva/efeitos dos fármacos , Neonicotinoides/toxicidade , Guanidinas/toxicidade , Tiazóis/toxicidade , Inseticidas/toxicidade , Penaeidae/efeitos dos fármacos , Penaeidae/crescimento & desenvolvimento , Poluentes Químicos da Água/toxicidade , Apoptose/efeitos dos fármacos
19.
Artigo em Inglês | MEDLINE | ID: mdl-38154166

RESUMO

The mud crab (Scylla paramamosain) possesses extensive regenerative abilities, enabling it to replace missing body parts, including claws, legs, and even eyes. Studying the genetic and molecular mechanisms underlying regenerative ability in diverse animal phyla has the potential to provide new insights into regenerative medicine in humans. In the present study, we performed mRNA sequencing to reveal the genetic mechanisms underlying the claw regeneration in mud crab. Several differentially expressed genes (DEGs) were expressed in biological pathways associated with cuticle synthase, collagen synthase, tissue regeneration, blastema formation, wound healing, cell cycle, cell division, and cell migration. The top GO enrichment terms were microtubule-based process, collagen trimer, cell cycle process, and extracellular matrix structural constituent. The most enriched KEGG pathways were ECM-receptor interaction and focal adhesion. The genes encoding key functional proteins, such as collagen alpha, cuticle protein, early cuticle protein, arthrodial cuticle protein, dentin sialophosphoprotein (DSPP), epidermal growth factor receptor (EGFR), kinesin family member C1 (KIFC1), and DNA replication licensing factor mcm2-like (MCM2) were the most significant and important DEGs suspected to participate in claw regeneration. The findings of this research offer a comprehensive and insightful understanding of the genetic and molecular mechanisms underlying claw regeneration in S. paramamosain. By elucidating the specific genes and molecular pathways implicated in this process, our study contributes significantly to the broader field of regenerative biology and offers potential avenues for further exploration in crustacean limb regeneration.


Assuntos
Braquiúros , Animais , Braquiúros/fisiologia , Colágeno/genética , Colágeno/metabolismo , Perfilação da Expressão Gênica
20.
Animals (Basel) ; 14(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396508

RESUMO

Litopenaeus vannamei, with high plant protein acceptance and high global aquaculture production, is a potential species for rapeseed meal application. However, rapeseed meal has been associated with anorexia in fish, and whether the same occurs in L. vannamei remains unknown. This study demonstrated the effects of rapeseed meal on the feeding and anorexigenic endocrine of L. vannamei based on feeding behavior and transcriptomics. Soybean meal was replaced with fermented rapeseed meal (50%), and a significant increase in remaining diet and dietary discard was observed with a significant reduction in dietary visits. Transcriptome analysis revealed that the pathways involved in rapeseed meal-induced anorexia mainly included signal transduction, the digestive system, the sensory system, the endocrine system, phototransduction-fly, the thyroid hormone signaling pathway and pancreatic secretion. Moreover, this study further analyzed and identified seven neuropeptides involved in rapeseed meal-induced anorexia, and it explored the complex expression regulation strategies of these neuropeptides. In summary, this study confirmed through feeding behavior that rapeseed meal causes anorexia in L. vannamei, and it identified seven neuropeptides that were closely related to the anorexia process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA