Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 29(20): 205602, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29488899

RESUMO

We report on the growth and optical characterization of droplet GaAs quantum dots (QDs) with extremely-thin (11 nm) capping layers. To achieve such result, an internal thermal heating step is introduced during the growth and its role in the morphological properties of the QDs obtained is investigated via scanning electron and atomic force microscopy. Photoluminescence measurements at cryogenic temperatures show optically stable, sharp and bright emission from single QDs, at visible wavelengths. Given the quality of their optical properties and the proximity to the surface, such emitters are good candidates for the investigation of near field effects, like the coupling to plasmonic modes, in order to strongly control the directionality of the emission and/or the spontaneous emission rate, crucial parameters for quantum photonic applications.

2.
J Nanosci Nanotechnol ; 18(9): 6017-6020, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677736

RESUMO

Hole mobility characteristics were investigated with surface roughness and silicon-on-insulator (SOI) thickness variations to investigate the influence of surface roughness to mobility. The root mean square roughness varied between 0.16, 0.85 and 10.6 nm in 220, 100 and 40 nm thick SOI samples. Hole mobility was measured and analyzed as a function of effective field and temperature with the variations of surface roughness. The hole mobility, determined by transconductance, greatly decreased with the increase of effective field due to the increased surface roughness scattering in 40 nm thick SOI samples. On the other hand, phonon scattering was a dominant mechanism with the increase of temperature, irrespective of surface roughness and SOI thickness. The induced surface roughness of the devices increases the phonon scattering, thereby reducing the electron and hole mobility. The hole mobility decreases with the roughening of the samples, with the increase of temperature due to increased phonon scattering. Therefore, for enhanced mobility, surface scattering and phonon scattering should be controlled even in atomic scale roughened samples.

3.
Nano Lett ; 15(4): 2491-7, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25756859

RESUMO

We describe a metal nanodisk-insulator-metal (MIM) structure that enhances lanthanide-based upconversion (UC) and downshifting (DS) simultaneously. The structure was fabricated using a nanotransfer printing method that facilitates large-area applications of nanostructures for optoelectronic devices. The proposed MIM structure is a promising way to harness the entire solar spectrum by converting both ultraviolet and near-infrared to visible light concurrently through resonant-mode excitation. The overall photoluminescence enhancements of the UC and DS were 174- and 29-fold, respectively.


Assuntos
Medições Luminescentes/métodos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Impressão Molecular/métodos , Prata/química , Ressonância de Plasmônio de Superfície/métodos , Luz , Teste de Materiais , Espalhamento de Radiação
4.
J Nanosci Nanotechnol ; 8(10): 5257-60, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19198433

RESUMO

In this work analytic model for generation of excess low-frequency noise in nanorod devices such as field-effect transistors are developed. In back-gate field-effect transistors where most of the surface area of the nanorod is exposed to the ambient, the surface states could be the major noise source via random walk of electrons for the low-frequency or 1/f noise. In dual gate transistors, the interface states and oxide traps can compete with each other as the main noise source via random walk and tunneling, respectively.

5.
J Nanosci Nanotechnol ; 8(10): 5558-60, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19198498

RESUMO

After rapid thermal annealing (RTA), deep levels were found to be generated in Au/GaAs Schottky diodes embedded with InAs quantum dots grown by migration enhanced molecular beam epitaxy (MEMBE). From the corner frequency of the 1/f2 part of the low-frequency noise specrtral density, the locations of the deep levels were estimated to be 0.58, 0.61, and 0.66 eV below the conduction band edge for the samples without quantum dot layer, with quantum dot layer and capping layer thickness of 0.8 microm, and with quantum dot layer and the capping layer thickness of 0.4 microm, respectively. RTA also lowered the Schottky barrier height.

6.
ACS Nano ; 9(5): 5486-99, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25897466

RESUMO

Single-crystalline alloy II-VI semiconductor nanostructures have been used as functional materials to propel photonic and optoelectronic device performance in a broad range of the visible spectrum. Their functionality depends on the stable modulation of the direct band gap (Eg), which can be finely tuned by controlling the properties of alloy composition, crystallinity, and morphology. We report on the structural correlation of the optical band gap anomaly of quaternary alloy CdxZn1-xSySe1-y single-crystalline nanostructures that exhibit different morphologies, such as nanowires (NWs), nanobelts (NBs), and nanosheets (NSs), and cover a wide range of the visible spectrum (Eg = 1.96-2.88 eV). Using pulsed laser deposition, the nanostructures evolve from NWs via NBs to NSs with decreasing growth temperature. The effects of the growth temperature are also reflected in the systematic variation of the composition. The alloy nanostructures firmly maintain single crystallinity of the hexagonal wurtzite and the nanoscale morphology, with no distortion of lattice parameters, satisfying the virtual crystal model. For the optical properties, however, we observed distinct structure-dependent band gap anomalies: the disappearance of bowing for NWs and maximum and slightly reduced bowing for NBs and NSs, respectively. We tried to uncover the underlying mechanism that bridges the structural properties and the optical anomaly using an empirical pseudopotential model calculation of electronic band structures. From the calculations, we found that the optical bowings in NBs and NSs were due to residual strain, by which they are also distinguishable from each other: large for NBs and small for NSs. To explain the origin of the residual strain, we suggest a semiempirical model that considers intrinsic atomic disorder, resulting from the bond length mismatch, combined with the strain relaxation factor as a function of the width-to-thickness ratio of the NBs or NSs. The model agreed well with the observed optical bowing of the alloy nanostructures in which a mechanism for the maximum bowing for NBs is explained. The present systematic study on the structural-optical properties correlation opens a new perspective to understand the morphology- and composition-dependent unique optical properties of II-VI alloy nanostructures as well as a comprehensive strategy to design a facile band gap modulation method of preparing photoconverting and photodetecting materials.

7.
Nanoscale Res Lett ; 10: 114, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852409

RESUMO

The position of a single GaAs quantum dot (QD), which is optically active, grown by low-density droplet epitaxy (DE) (approximately 4 QDs/µm(2)), was directly observed on the surface of a 45-nm-thick Al0.3Ga0.7As capping layer. The thin thickness of AlGaAs capping layer is useful for single photon sources with plasmonic optical coupling. A micro-photoluminescence for GaAs DE QDs has shown exciton/biexciton behavior in the range of 1.654 to 1.657 eV. The direct observation of positions of low-density GaAs DE QDs would be advantageous for mass fabrication of devices that use a single QD, such as single photon sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA