Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Small ; 20(26): e2311126, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38221692

RESUMO

Titanium disulfide (TiS2) is a promising anode material for sodium-ion batteries due to its high theoretical capacity, but it suffers from severe volume variation and shuttle effect of the intermediate polysulfides. To overcome the drawbacks, herein the successful fabrication of TiS2@N,S-codoped C (denoted as TiS2@NSC) through a chemical vapor reaction between Ti-based metal-organic framework (NH2-MIL-125) and carbon disulfide (CS2) is demonstrated. The C─N bonds enhance the electronic/ionic conductivity of the TiS2@NSC electrode, while the C─S bonds provide extra sodium storage capacity, and both polar bonds synergistically suppress the shuttle effect of polysulfides. Consequently, the TiS2@NSC electrode demonstrates outstanding cycling stability and rate performance, delivering reversible capacities of 418/392 mAh g-1 after 1000 cycles at 2/5 A g-1. Ex situ X-ray photoelectron spectroscopy and transmission electron microscope analyses reveal that TiS2 undergoes an intercalation-conversion ion storage mechanism with the generation of metallic Ti in a deeper sodiation state, and the pristine hexagonal TiS2 is electrochemically transformed into cubic rock-salt TiS2 as a reversible phase with enhanced reaction kinetics upon sodiation/desodiation cycling. The strategy to encapsulate TiS2 in N,S-codoped porous carbon matrices efficiently realizes superior conductivity and physical/chemical confinement of the soluble polysulfides, which can be generally applied for the rational design of advanced electrodes.

2.
Small ; 19(38): e2302831, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37199134

RESUMO

Titanium dioxide (TiO2 ) is a promising anode material for sodium-ion batteries (SIBs), which suffer from the intrinsic sluggish ion transferability and poor conductivity. To overcome these drawbacks, a facile strategy is developed to synergistically engineer the lattice defects (i.e., heteroatom doping and oxygen vacancy generation) and the fine microstructure (i.e., carbon hybridization and porous structure) of TiO2 -based anode, which efficiently enhances the sodium storage performance. Herein, it is successfully realized that the Si-doping into the MIL-125 metal-organic framework structure, which can be easily converted to SiO2 /TiO2-x @C nanotablets by annealing under inert atmosphere. After NaOH etching SiO2 /TiO2-x @C which contains unbonded SiO2 and chemically bonded SiOTi, thus the lattice Si-doped TiO2-x @C (Si-TiO2-x @C) nanotablets with rich Ti3+ /oxygen vacancies and abundant inner pores are developed. When examined as an anode for SIB, the Si-TiO2-x @C exhibits a high sodium storage capacity (285 mAh g-1 at 0.2 A g-1 ), excellent long-term cycling, and high-rate performances (190 mAh g-1 at 2 A g-1 after 2500 cycles with 95.1% capacity retention). Theoretical calculations indicate that the rich Ti3+ /oxygen vacancies and Si-doping synergistically contribute to a narrowed bandgap and lower sodiation barrier, which thus lead to fast electron/ion transfer coefficients and the predominant pseudocapacitive sodium storage behavior.

3.
Nanotechnology ; 33(41)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35385837

RESUMO

Composite polymer electrolyte (CPE) films with high room temperature ionic conductivity are urgently needed for the practical application of high-safety solid-state batteries (SSBs). Here, a flexible polymer-polymer CPE thin film reinforced by a three-dimensional (3D) bacterial cellulose (BC) framework derived from natural BC hydrogel was prepared via thein situphoto-polymerization method. The BC film was utilized as the supporting matrix to ensure high flexibility and mechanical strength. The BC-CPE attained a high room temperature ionic conductivity of 1.3 × 10-4S cm-1. The Li∣BC-CPE∣Li symmetric cell manifested stable cycles of more than 1200 h. The LCO∣BC-CPE∣Li full cell attained an initial discharge specific capacity of 128.7 mAh g-1with 82.6% discharge capacity retention after 150 cycles at 0.2 C under room temperature. The proposed polymer-polymer CPE configuration represents a promising route for manufacturing environmental SSBs, especially since cellulose biomaterials are abundant in nature.


Assuntos
Celulose , Lítio , Bactérias , Eletrólitos , Polímeros , Temperatura
4.
Angew Chem Int Ed Engl ; 61(19): e202117728, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35233902

RESUMO

Layered oxide cathodes usually exhibit high compositional diversity, thus providing controllable electrochemical performance for Na-ion batteries. These abundant components lead to complicated structural chemistry, closely affecting the stacking preference, phase transition and Na+ kinetics. With this perspective, we explore the thermodynamically stable phase diagram of various P2/O3 composites based on a rational biphasic tailoring strategy. Then a specific P2/O3 composite is investigated and compared with its monophasic counterparts. A highly reversible structural evolution of P2/O3-P2/O3/P3-P2/P3-P2/Z/O3'-Z/O3' based on the Ni2+ /Ni3.5+ , Fe3+ /Fe4+ and Mn3.8+ /Mn4+ redox couples upon sequential Na extraction/insertion is revealed. The reduced structural strain at the phase boundary alleviates the phase transition and decreases the lattice mismatch during cycling, endowing the biphasic electrode a large reversible capacity of 144 mAh g-1 with the energy density approaching 514 Wh kg-1 .

5.
Nanotechnology ; 32(4): 045602, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33036014

RESUMO

By virtue of its high specific surface area and low tortuosity for ionic storage and transportation, holey graphene has come to be regarded as a promising material for energy storage devices, such as lithium ion batteries, and supercapacitors. For practical applications, a scalable and green preparation method for holey graphene is required. This work proposes a facile preparation method for holey graphene by simply microwaving pristine graphene in air. Compared with previous scalable methods, this method exhibits much greater efficiency, reducing the preparation time from hours to minutes. The mechanism underlying the microwave irradiation-induced formation of nanosized holes involves the interaction between microwaves, electrons, oxygen in air, and carbon atoms in the defect areas of the graphene. The size, density, and distribution of holes can be controlled by tuning the microwave irradiation time and oxygen concentration. Used as a hybrid conductive agent, the as-prepared holey multilayer graphene increases capacitance retention to 96.25% at high current density (8 A g-1), and 96.48% in long cycles (1 A g-1 and 10 000 cycles).

6.
Nanotechnology ; 32(49)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34428756

RESUMO

To address the flammable and chemical unstable problems of liquid electrolyte, the solid electrolyte is a promising candidate to replace liquid electrolyte for solid-state batteries. Herein, a composite polymer electrolyte (CPE) of 3D polyimide (PI)-nanofiber membrane-incorporated polyethylene oxide (PEO)/lithium bis (triflu-romethanesulphonyl) imid (LiTFSI) is reported. Three advantages of the PI nanofiber network in the CPE include providing a continuous, rapid transport channel of lithium ions to improve the Li-ion conductivity, improving the mechanical properties and stability, and effectively inhibiting the dendrite growth of Li metal. The PI/PEO/LiTFSI CPE delivers an ionic conductivity of 4.2 × 10-4S cm-1at 60 °C, a wider electrochemical window to 5.4 V, and an excellent thermal stability, which result in the excellent electrochemical performance of LiFePO4full cells assembled with PI/PEO/LiTFSI CPE.

7.
Nanotechnology ; 32(28)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33799310

RESUMO

Lithium-sulfur batteries are one of the most promising energy storage systems due to their high energy density. Many efforts have been made to improve the electrochemical performance of lithium-sulfur batteries. However, the complex and time-consuming preparation process hinders their practical application. In this work, an ultra-fast and facile method has been proposed to prepare the sulfur/graphene composites in a simplified and time-saving preparation process with the assistance of microwave. Microwave is introduced to help sulfur fleetly deposit uniformly on the surface of graphene within just 30 s. Nano-sized sulfur within 30 nm is generated in this ultra-fast process. Lithium-sulfur batteries with as-prepared sulfur/graphene composites exhibit good cycling life with a capacity of 503.5 mAh g-1at 0.2 C. This method makes it possible for lithium-sulfur batteries to be practical.

8.
Small ; 15(46): e1902393, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31497931

RESUMO

In vitro prediction of physiologically relevant transport of therapeutic molecules across the microcirculation represents an intriguing opportunity to predict efficacy in human populations. On-chip microvascular networks (MVNs) show physiologically relevant values of molecular permeability, yet like most systems, they lack an important contribution to transport: the ever-present fluid convection through the endothelium. Quantification of transport through the MVNs by current methods also requires confocal imaging and advanced analytical techniques, which can be a bottleneck in industry and academic laboratories. Here, it is shown that by recapitulating physiological transmural flow across the MVNs, the concentration of small and large molecule therapeutics can be directly sampled in the interstitial fluid and analyzed using standard analytical techniques. The magnitudes of transport measured in MVNs reveal trends with molecular size and type (protein versus nonprotein) that are expected in vivo, supporting the use of the MVNs platform as an in vitro tool to predict distribution of therapeutics in vivo.


Assuntos
Líquido Extracelular/fisiologia , Microvasos/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Proteínas Sanguíneas/metabolismo , Fluoresceína-5-Isotiocianato/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Dispositivos Lab-On-A-Chip , Perfusão , Permeabilidade , Pressão , Transporte Proteico
9.
Proc Natl Acad Sci U S A ; 113(26): 7094-9, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27307440

RESUMO

Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (∼3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion-conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li(+) transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10(-4) S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm(2) for around 500 h and a current density of 0.5 mA/cm(2) for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium-sulfur batteries.

10.
Nat Mater ; 16(5): 572-579, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27992420

RESUMO

Garnet-type solid-state electrolytes have attracted extensive attention due to their high ionic conductivity, approaching 1 mS cm-1, excellent environmental stability, and wide electrochemical stability window, from lithium metal to ∼6 V. However, to date, there has been little success in the development of high-performance solid-state batteries using these exceptional materials, the major challenge being the high solid-solid interfacial impedance between the garnet electrolyte and electrode materials. In this work, we effectively address the large interfacial impedance between a lithium metal anode and the garnet electrolyte using ultrathin aluminium oxide (Al2O3) by atomic layer deposition. Li7La2.75Ca0.25Zr1.75Nb0.25O12 (LLCZN) is the garnet composition of choice in this work due to its reduced sintering temperature and increased lithium ion conductivity. A significant decrease of interfacial impedance, from 1,710 Ω cm2 to 1 Ω cm2, was observed at room temperature, effectively negating the lithium metal/garnet interfacial impedance. Experimental and computational results reveal that the oxide coating enables wetting of metallic lithium in contact with the garnet electrolyte surface and the lithiated-alumina interface allows effective lithium ion transport between the lithium metal anode and garnet electrolyte. We also demonstrate a working cell with a lithium metal anode, garnet electrolyte and a high-voltage cathode by applying the newly developed interface chemistry.

11.
Nanotechnology ; 29(42): 425708, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30070658

RESUMO

An ideal supporting material improves both activity and durability of noble metal nanoparticles in electrocatalytic reactions. Graphene possesses a high transport rate of electrons in-plane, a low cost, and stability, but, the restacking of graphene layers trap noble metal nanoparticles and make them inaccessible to reactants and results in reduced catalytic activity. Here, holey-graphene as the supporting materials for Pt nanoparticle catalysts is deeply investigated in the electrocatalytic reaction of methanol oxidation. The holey-graphene can be scalable to synthesize using our simple method described herein. The holes on the holey-graphene layer promote the access of reactants with Pt nanoparticle catalysts compared with carbon black and graphene when used as supporting materials. Density functional theory calculations and molecule dynamic simulation further explain the function of holey-graphene in the promotion of electrocatalytic activity. Holey-graphene may open extraordinary possibilities as a supporting material for electrocatalysts.

12.
Bioconjug Chem ; 28(2): 620-626, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28140559

RESUMO

As antibody-drug conjugate (ADC) design is evolving with novel payload, linker, and conjugation chemistry, the need for sensitive and precise quantitative measurement of conjugated payload to support pharmacokinetics (PK) is in high demand. Compared to ADCs containing noncleavable linkers, a strategy specific to linkers which are liable to pH, chemical reduction, or enzymatic cleavage has gained popularity in recent years. One bioanalytical approach to take advantage of this type of linker design is the development of a PK assay measuring released conjugated payload. For the ADC utilizing a dipeptide ValCit linker studied in this report, the release of payload PF-06380101 was achieved with high efficiency using a purified cathepsin B enzyme. The subsequent liquid chromatography mass spectrometry (LC/MS) quantitation leads to the PK profile of the conjugated payload. For this particular linker using a maleimide-based conjugation chemistry, one potential route of payload loss would result in an albumin adduct of the linker-payload. While this adduct's formation has been previously reported, here, for the first time, we have shown that payload from a source other than ADC contributes only up to 4% of total conjugated payload while it accounts for approximately 35% of payload lost from the ADC at 48 h after dosing to rats.


Assuntos
Catepsina B/metabolismo , Imunoconjugados/metabolismo , Imunoconjugados/farmacocinética , Animais , Álcoois Benzílicos/química , Álcoois Benzílicos/metabolismo , Dipeptídeos/química , Dipeptídeos/metabolismo , Desenho de Fármacos , Imunoconjugados/química , Masculino , Maleimidas/química , Maleimidas/metabolismo , Ratos Sprague-Dawley
13.
Angew Chem Int Ed Engl ; 56(48): 15334-15338, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28980754

RESUMO

Organic room-temperature sodium-ion battery electrodes with carboxylate and carbonyl groups have been widely studied. Herein, for the first time, we report a family of sodium-ion battery electrodes obtained by replacing stepwise the oxygen atoms with sulfur atoms in the carboxylate groups of sodium terephthalate which improves electron delocalization, electrical conductivity and sodium uptake capacity. The versatile strategy based on molecular engineering greatly enhances the specific capacity of organic electrodes with the same carbon scaffold. By introducing two sulfur atoms to a single carboxylate scaffold, the molecular solid reaches a reversible capacity of 466 mAh g-1 at a current density of 50 mA g-1 . When four sulfur atoms are introduced, the capacity increases to 567 mAh g-1 at a current density of 50 mA g-1 , which is the highest capacity value reported for organic sodium-ion battery anodes until now.

14.
J Am Chem Soc ; 138(37): 12258-62, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27570205

RESUMO

All-solid-state Li-batteries using solid-state electrolytes (SSEs) offer enhanced safety over conventional Li-ion batteries with organic liquid electrolytes due to the nonflammable nature of SSEs. The superior mechanical strength of SSEs can also protect against Li dendrite penetration, which enables the use of the highest specific capacity (3861 mAh/g) and lowest redox potential (-3.04 V vs standard hydrogen electrode) anode: Li metal. However, contact between the Li metal and SSEs presents a major challenge, where a large polarization occurs at the Li metal/SSE interface. Here, the chemical properties of a promising oxide-based SSE (garnet) changed from "super-lithiophobicity" to "super-lithiophilicity" through an ultrathin coating of amorphous Si deposited by plasma-enhanced chemical vapor deposition (PECVD). The wettability transition is due to the reaction between Li and Si and the in situ formation of lithiated Si. As a result, symmetric cells composed of a Si-coated garnet-structured SSE and Li metal electrodes exhibited much smaller impedance and excellent stability upon plating/stripping cycles compared to cells using bare garnet SSE. Specifically, the interfacial resistance between Li and garnet dramatically decreased from 925 to 127 Ω cm(2) when lithiated Si was formed on the garnet. Our discovery of switchable lithiophobic-lithiophilic surfaces to improve the Li metal/SSE interface opens opportunities for improving many other SSEs.

15.
Anal Chem ; 88(9): 4979-86, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27075639

RESUMO

The reactive thiol of cysteine is often used for coupling maleimide-containing linker-payloads to antibodies resulting in the generation of antibody drug conjugates (ADCs). Currently, a numbers of ADCs in drug development are made by coupling a linker-payload to native or engineered cysteine residues on the antibody. An ADC conjugated via hinge-cysteines to an auristatin payload was used as a model in this study to understand the impact of the maleimide linkers on ADC stability. The payload was conjugated to trastuzumab by a protease-cleavable linker, maleimido-caproyl-valine-citruline-p-amino-benzyloxy carbonyl (mcVC-PABC). In plasma stability assays, when the ADC (Trastuzumab-mcVC-PABC-Auristatin-0101) was incubated with plasma over a 144-h time-course, a discrepancy was observed between the measured released free payload concentration and the measured loss of drug-to-antibody ratio (DAR), as measured by liquid chromatography-mass spectrometry (LC-MS). We found that an enzymatic release of payload from ADC-depleted human plasma at 144 h was able to account for almost 100% of the DAR loss. Intact protein mass analysis showed that at the 144 h time point, the mass of the major protein in ADC-depleted human plasma had an additional 1347 Da over the native albumin extracted from human plasma, exactly matching the mass of the linker-payload. In addition, protein gel electrophoresis showed that there was only one enriched protein in the 144 h ADC-depleted and antipayload immunoprecipitated plasma sample, as compared to the 0 h plasma immunoprecipitated sample, and the mass of this enriched protein was slightly heavier than the mass of serum albumin. Furthermore, the albumin adduct was also identified in 96 h and 168 h postdose in vivo cynomolgus monkey plasma. These results strongly suggest that the majority of the deconjugated mc-VC-PABC-auristatin ultimately is transferred to serum albumin, forming a long-lived albumin-linker-payload adduct. To our knowledge, this is the first report quantitatively characterizing the extent of linker-payload transfer to serum albumin and the first clear example of in vivo formation of an albumin-linker-payload adduct.


Assuntos
Aminobenzoatos/química , Maleimidas/química , Oligopeptídeos/química , Trastuzumab/química , Aminobenzoatos/sangue , Animais , Humanos , Macaca fascicularis , Maleimidas/sangue , Oligopeptídeos/sangue , Ratos , Trastuzumab/sangue
16.
Bioconjug Chem ; 27(8): 1880-8, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27412791

RESUMO

There is a considerable ongoing work to identify new cytotoxic payloads that are appropriate for antibody-based delivery, acting via mechanisms beyond DNA damage and microtubule disruption, highlighting their importance to the field of cancer therapeutics. New modes of action will allow a more diverse set of tumor types to be targeted and will allow for possible mechanisms to evade the drug resistance that will invariably develop to existing payloads. Spliceosome inhibitors are known to be potent antiproliferative agents capable of targeting both actively dividing and quiescent cells. A series of thailanstatin-antibody conjugates were prepared in order to evaluate their potential utility in the treatment of cancer. After exploring a variety of linkers, we found that the most potent antibody-drug conjugates (ADCs) were derived from direct conjugation of the carboxylic acid-containing payload to surface lysines of the antibody (a "linker-less" conjugate). Activity of these lysine conjugates was correlated to drug-loading, a feature not typically observed for other payload classes. The thailanstatin-conjugates were potent in high target expressing cells, including multidrug-resistant lines, and inactive in nontarget expressing cells. Moreover, these ADCs were shown to promote altered splicing products in N87 cells in vitro, consistent with their putative mechanism of action. In addition, the exposure of the ADCs was sufficient to result in excellent potency in a gastric cancer xenograft model at doses as low as 1.5 mg/kg that was superior to the clinically approved ADC T-DM1. The results presented herein therefore open the door to further exploring splicing inhibition as a potential new mode-of-action for novel ADCs.


Assuntos
Produtos Biológicos/química , Imunoconjugados/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Ácidos Carboxílicos/química , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Cisteína/química , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/farmacologia , Lisina/química , Maleimidas/química , Camundongos , Piranos/química , Distribuição Tecidual
17.
Nano Lett ; 15(6): 3763-9, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25932654

RESUMO

In this work, we report for the first time that Na-ion intercalation of reduced graphene oxide (RGO) can significantly improve its printed network's performance as a transparent conductor. Unlike pristine graphene that inhibits Na-ion intercalation, the larger layer-layer distance of RGO allows Na-ion intercalation, leading to simultaneously much higher DC conductivity and higher optical transmittance. The typical increase of transmittance from 36% to 79% and decrease of sheet resistance from 83k to 311 Ohms/sq in the printed network was observed after Na-ion intercalation. Compared with Li-intercalated graphene, Na-ion intercalated RGO shows much better environmental stability, which is likely due to the self-terminating oxidation of Na ions on the RGO edges. This study demonstrated the great potential of metal-ion intercalation to improve the performance of printed RGO network for transparent conductor applications.

18.
Bioconjug Chem ; 26(11): 2223-32, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26180901

RESUMO

The pharmacokinetics of an antibody (huA1)-drug (auristatin microtubule disrupting MMAF) conjugate, targeting 5T4-expressing cells, were characterized during the discovery and development phases in female nu/nu mice and cynomolgus monkeys after a single dose and in S-D rats and cynomolgus monkeys from multidose toxicity studies. Plasma/serum samples were analyzed using an ELISA-based method for antibody and conjugate (ADC) as well as for the released payload using an LC-MS/MS method. In addition, the distribution of the Ab, ADC, and released payload (cys-mcMMAF) was determined in a number of tissues (tumor, lung, liver, kidney, and heart) in two tumor mouse models (H1975 and MDA-MB-361-DYT2 models) using similar LBA and LC-MS/MS methods. Tissue distribution studies revealed preferential tumor distribution of cys-mcMMAF and its relative specificity to the 5T4 target containing tissue (tumor). Single dose studies suggests lower CL values at the higher doses in mice, although a linear relationship was seen in cynomolgus monkeys at doses from 0.3 to 10 mg/kg with no evidence of TMDD. Evaluation of DAR (drug-antibody ratio) in cynomolgus monkeys (at 3 mg/kg) indicated that at least half of the payload was still on the ADC 1 to 2 weeks after IV dosing. After multiple doses, the huA1 and conjugate data in rats and monkeys indicate that exposure (AUC) increases with increasing dose in a linear fashion. Systemic exposure (as assessed by Cmax and AUC) of the released payload increased with increasing dose, although exposure was very low and its pharmacokinetics appeared to be formation rate limited. The incidence of ADA was generally low in rats and monkeys. We will discuss cross species comparison, relationships between the Ab, ADC, and released payload exposure after multiple dosing, and insights into the distribution of this ADC with a focus on experimental design as a way to address or bypass apparent obstacles and its integration into predictive models.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Imunoconjugados/farmacocinética , Glicoproteínas de Membrana/imunologia , Oligopeptídeos/farmacocinética , Animais , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Macaca fascicularis , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Oligopeptídeos/química , Oligopeptídeos/imunologia , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
19.
Nano Lett ; 14(5): 2466-70, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24712540

RESUMO

We report the development of a stress-responsive colorimetric film that can memorize the stress it has experienced. The system is designed by taking advantage of the plasmonic shift associated with the disassembly of one-dimensional gold nanoparticle chains driven by the plastic deformation of the surrounding polymer matrix. By modifying the plasticity of the polymer, we demonstrate that the plasmonic shift and colorimetric change respond to a large range of stresses. This novel pressure indicating film can be used to capture and record the pressure distribution and magnitude between two contacting or impacting surfaces by outputting color information.

20.
Nano Lett ; 14(1): 139-47, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24283393

RESUMO

Atomic-layer-deposition (ALD) coatings have been increasingly used to improve battery performance. However, the electrochemical and mechanistic roles remain largely unclear, especially for ALD coatings on electrodes that undergo significant volume changes (up to 100%) during charging/discharging. Here we investigate an anode consisting of tin nanoparticles (SnNPs) with an ALD-Al2O3 coating. For the first time, in situ transmission electron microscopy unveiled the dynamic mechanical protection of the ALD-Al2O3 coating by coherently deforming with the SnNPs under the huge volume changes during charging/discharging. Battery tests in coin-cells further showed the ALD-Al2O3 coating remarkably boosts the cycling performance of the Sn anodes, comparing with those made of bare SnNPs. Chemomechanical simulations clearly revealed that a bare SnNP debonds and falls off the underlying substrate upon charging, and by contrast the ALD-Al2O3 coating, like ion-conductive nanoglue, robustly anchors the SnNP anode to the substrate during charging/discharging, a key to improving battery cycle performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA