Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 40(Supplement_1): i110-i118, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940144

RESUMO

Artificial intelligence (AI) is increasingly used in genomics research and practice, and generative AI has garnered significant recent attention. In clinical applications of generative AI, aspects of the underlying datasets can impact results, and confounders should be studied and mitigated. One example involves the facial expressions of people with genetic conditions. Stereotypically, Williams (WS) and Angelman (AS) syndromes are associated with a "happy" demeanor, including a smiling expression. Clinical geneticists may be more likely to identify these conditions in images of smiling individuals. To study the impact of facial expression, we analyzed publicly available facial images of approximately 3500 individuals with genetic conditions. Using a deep learning (DL) image classifier, we found that WS and AS images with non-smiling expressions had significantly lower prediction probabilities for the correct syndrome labels than those with smiling expressions. This was not seen for 22q11.2 deletion and Noonan syndromes, which are not associated with a smiling expression. To further explore the effect of facial expressions, we computationally altered the facial expressions for these images. We trained HyperStyle, a GAN-inversion technique compatible with StyleGAN2, to determine the vector representations of our images. Then, following the concept of InterfaceGAN, we edited these vectors to recreate the original images in a phenotypically accurate way but with a different facial expression. Through online surveys and an eye-tracking experiment, we examined how altered facial expressions affect the performance of human experts. We overall found that facial expression is associated with diagnostic accuracy variably in different genetic conditions.


Assuntos
Expressão Facial , Humanos , Aprendizado Profundo , Inteligência Artificial , Genética Médica/métodos , Síndrome de Williams/genética
2.
medRxiv ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37790417

RESUMO

Artificial intelligence (AI) is used in an increasing number of areas, with recent interest in generative AI, such as using ChatGPT to generate programming code or DALL-E to make illustrations. We describe the use of generative AI in medical education. Specifically, we sought to determine whether generative AI could help train pediatric residents to better recognize genetic conditions. From publicly available images of individuals with genetic conditions, we used generative AI methods to create new images, which were checked for accuracy with an external classifier. We selected two conditions for study, Kabuki (KS) and Noonan (NS) syndromes, which are clinically important conditions that pediatricians may encounter. In this study, pediatric residents completed 208 surveys, where they each classified 20 images following exposure to one of 4 possible educational interventions, including with and without generative AI methods. Overall, we find that generative images perform similarly but appear to be slightly less helpful than real images. Most participants reported that images were useful, although real images were felt to be more helpful. We conclude that generative AI images may serve as an adjunctive educational tool, particularly for less familiar conditions, such as KS.

3.
medRxiv ; 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37577564

RESUMO

Deep learning (DL) and other types of artificial intelligence (AI) are increasingly used in many biomedical areas, including genetics. One frequent use in medical genetics involves evaluating images of people with potential genetic conditions to help with diagnosis. A central question involves better understanding how AI classifiers assess images compared to humans. To explore this, we performed eye-tracking analyses of geneticist clinicians and non-clinicians. We compared results to DL-based saliency maps. We found that human visual attention when assessing images differs greatly from the parts of images weighted by the DL model. Further, individuals tend to have a specific pattern of image inspection, and clinicians demonstrate different visual attention patterns than non-clinicians.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA