Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 31(38): 10469-76, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26352908

RESUMO

Understanding the electrical properties of clay nanoparticles is very important since they play a crucial role in every aspect of oil sands processing, from bitumen extraction to sedimentation in mature fine tailings (MFT). Here, we report the direct mapping and quantification of surface charges on clay nanoparticles using Kelvin probe force microscopy (KPFM) and electrostatic force microscopy (EFM). The morphology of clean kaolinite clay nanoparticles shows a layered structure, while the corresponding surface potential map shows a layer-dependent charge distribution. More importantly, a surface charge density of 25 nC/cm(2) was estimated for clean kaolinite layers by using EFM measurements. On the other hand, the EFM measurements show that the clay particles obtained from the tailings demonstrate a reduced surface charge density of 7 nC/cm(2), which may be possibly attributed to the presence of various bituminous compounds residing on the clay surfaces.

2.
Langmuir ; 31(2): 679-84, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25517259

RESUMO

In this paper, we provide measurement of charge of asphaltene nanoaggregates in air using electrostatic force microscopy. We obtain the average surface charge density of the nanoaggregates as 43.7 nC/cm(2). Among the different aspects of asphaltene, one of the least known is its charge and the effect of solvent and compositional variability (of asphaltene) in dictating this charge. For aqueous systems, asphaltene charge demonstrates a strong dependence on the pH and the salt concentration, indicating that a possible ionization of the surface groups leads to this charging. On the contrary, for asphaltene in nonpolar media (e.g., toluene and heptane), it is believed that asphaltene native charge is central in dictating this charging. This native charge is the solvent-independent charge or the asphaltene charge in air. Our measurements, therefore, provide the first direct quantification (i.e., a quantification of charge not from the measurement of the asphaltene mobilities, which in turn requires specification of the nonuniform asphaltene size distribution) of this asphaltene native charge by conducting the measurements in air. Similar measurements in a solvent may introduce a solvent-dependent value, thereby forbidding not only the exact quantification of this native charge but also the understanding of the specific role of the solvent. This measurement, therefore, will provide a useful starting point to quantify the mechanism of asphaltene charging in nonpolar solvents with important ramifications in deciphering the role of asphaltene in transport and handling of crude and heavy oils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA