Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35683838

RESUMO

The purpose of this study was to prepare low-viscosity lignin-based polyurethane (LPU) resins for the modification of ramie (Boehmeria nivea (L.) Gaudich) fiber via impregnation to improve the fiber's thermal and mechanical properties. Low-viscosity LPU resins were prepared by dissolving lignin in 20% NaOH and then adding polymeric 4,4-methane diphenyl diisocyanate (pMDI, 31% NCO) with a mole ratio of 0.3 NCO/OH. Ramie fiber was impregnated with LPU in a vacuum chamber equipped with a two-stage vacuum pump. Several techniques such as Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry, thermogravimetric analysis, pyrolysis-gas chromatography-mass spectroscopy, field emission-scanning electron microscopy coupled with energy dispersive X-ray (EDX), and a universal testing machine were used to characterize lignin, LPU, and ramie fiber. The LPU resins had low viscosity ranging from 77 to 317 mPa·s-1. According to FTIR and EDX analysis, urethane bonds were formed during the synthesis of LPU resins and after impregnation into ramie fibers. After impregnation, the reaction between the LPU's urethane group and the hydroxy group of ramie fiber increased thermal stability by an average of 6% and mechanical properties by an average of 100% compared to the untreated ramie fiber. The highest thermal stability and tensile strength were obtained at ramie impregnated with LPU-ethyl acetate for 30 min, with a residual weight of 22% and tensile strength of 648.7 MPa. This study showed that impregnation with LPU resins can enhance the thermal and mechanical properties of fibers and increase their wider industrial utilization in value-added applications.

2.
Materials (Basel) ; 14(22)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34832252

RESUMO

In this study, lignin isolated and fractionated from black liquor was used as a pre-polymer to prepare bio-polyurethane (Bio-PU) resin, and the resin was impregnated into ramie fiber (Boehmeria nivea (L.) Gaudich) to improve its thermal and mechanical properties. The isolated lignin was fractionated by one-step fractionation using two different solvents, i.e., methanol (MeOH) and acetone (Ac). Each fractionated lignin was dissolved in NaOH and then reacted with a polymeric 4,4-methane diphenyl diisocyanate (pMDI) polymer at an NCO/OH mole ratio of 0.3. The resulting Bio-PU was then used in the impregnation of ramie fiber. The characterization of lignin, Bio-PU, and ramie fiber was carried out using several techniques, i.e., Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), pyrolysis-gas-chromatography-mass-spectroscopy (Py-GCMS), Micro Confocal Raman spectroscopy, and an evaluation of fiber mechanical properties (modulus of elasticity and tensile strength). Impregnation of Bio-PU into ramie fiber resulted in weight gain ranging from 6% to 15%, and the values increased when extending the impregnation time. The reaction between the NCO group on Bio-PU and the OH group on ramie fiber forms a C=O group of urethane as confirmed by FTIR and Micro Confocal Raman spectroscopies at a wavenumber of 1600 cm-1. Based on the TGA analysis, ramie fiber with lignin-based Bio-PU had better thermal properties than ramie fiber before impregnation with a greater weight residue of 21.7%. The mechanical properties of ramie fiber also increased after impregnation with lignin-based Bio-PU, resulting in a modulus of elasticity of 31 GPa for ramie-L-isolated and a tensile strength of 577 MPa for ramie-L-Ac. The enhanced thermal and mechanical properties of impregnated ramie fiber with lignin-based Bio-PU resins could increase the added value of ramie fiber and enhance its more comprehensive industrial application as a functional material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA