RESUMO
BACKGROUND: Currently, the gadolinium retention in the brain after the use of contrast agents is studied by T1 -weighted magnetic resonance imaging (MRI) (T1 w) and T1 mapping. The former does not provide easily quantifiable data and the latter requires prolonged scanning and is sensitive to motion. T2 mapping may provide an alternative approach. Animal studies of gadolinium retention are complicated by repeated intravenous (IV) dosing, whereas intraperitoneal (IP) injections might be sufficient. HYPOTHESIS: T2 mapping will detect the changes in the rat brain due to gadolinium retention, and IP administration is equivalent to IV for long-term studies. STUDY TYPE: Prospective longitudinal. ANIMAL MODEL: A total of 31 Sprague-Dawley rats administered gadodiamide IV (N = 8) or IP (N = 8), or saline IV (N = 6) or IP (N = 9) 4 days per week for 5 weeks. FIELD STRENGTH/SEQUENCES: A 7 T, T1 w, and T2 mapping. ASSESSMENT: T2 relaxation and image intensities in the deep cerebellar nuclei were measured pre-treatment and weekly for 5 weeks. Then brains were assessed for neuropathology (N = 4) or gadolinium content using inductively coupled plasma mass spectrometry (ICP-MS, N = 12). STATISTICAL TESTS: Repeated measures analysis of variance with post hoc Student-Newman-Keuls tests and Hedges' effect size. RESULTS: Gadolinium was detected by both approaches; however, T2 mapping was more sensitive (effect size 2.32 for T2 vs. 0.95 for T1 w), and earlier detection (week 3 for T2 vs. week 4 for T1 w). ICP-MS confirmed the presence of gadolinium (3.076 ± 0.909 nmol/g in the IV group and 3.948 ± 0.806 nmol/g in the IP group). There was no significant difference between IP and IV groups (ICP-MS, P = 0.109; MRI, P = 0.696). No histopathological abnormalities were detected in any studied animal. CONCLUSION: T2 relaxometry detects gadolinium retention in the rat brain after multiple doses of gadodiamide irrespective of the route of administration. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.
Assuntos
Meios de Contraste , Compostos Organometálicos , Animais , Encéfalo/diagnóstico por imagem , Gadolínio/farmacologia , Gadolínio DTPA , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos , Ratos , Ratos Sprague-DawleyRESUMO
OBJECTIVE: Parkinson's disease (PD) is a progressive motor disease of unknown etiology. Although neuroprotective ability of endogenous bile acid, tauroursodeoxycholic acid (TUDCA), shown in various diseases, including an acute model of PD,the potential therapeutic role of TUDCA in progressive models of PD that exhibit all aspects of PD has not been elucidated. In the present study, mice were assigned to one of four treatment groups: (1) Probenecid (PROB); (2) TUDCA, (3) MPTP + PROB (MPTPp); and (3) TUDCA + MPTPp. Methods: Markers for dopaminergic function, neuroinflammation, oxidative stress and autophagy were assessed using high performance liquid chromatography (HPLC), immunohistochemistry (IHC) and western blot (WB) methods. Locomotion was measured before and after treatments. Results: MPTPp decreased the expression of dopamine transporters (DAT) and tyrosine hydroxylase (TH), indicating dopaminergic damage, and induced microglial and astroglial activation as demonstrated by IHC analysis. MPTPp also decreased DA and its metabolites as demonstrated by HPLC analysis. Further, MPTPp-induced protein oxidation; increased LAMP-1 expression indicated autophagy and the promotion of alpha-synuclein (α-SYN) aggregation. Discussion: Pretreatment with TUDCA protected against dopaminergic neuronal damage, prevented the microglial and astroglial activation, as well as the DA and DOPAC reductions caused by MPTPp. TUDCA by itself did not produce any significant change, with data similar to the negative control group. Pretreatment with TUDCA prevented protein oxidation and autophagy, in addition to inhibiting α-SYN aggregation. Although TUDCA pretreatment did not significantly affect locomotion, only acute treatment effects were measured, indicating more extensive assessments may be necessary to reveal potential therapeutic effects on behavior. Together, these results suggest that autophagy may be involved in the progression of PD and that TUDCA may attenuate these effects. The efficacy of TUDCA as a novel therapy in patients with PD clearly warrants further study.
Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/prevenção & controle , Ácido Tauroquenodesoxicólico/farmacologia , Ácido Tauroquenodesoxicólico/uso terapêuticoRESUMO
Although several histochemical markers for senile plaques (SP) and neurofibrillary tangles (NFTs) have been synthesized since the discovery of plaques in Alzheimer's disease (AD), only a handful of these markers stain both lesions in the human brain. Despite discovery of its ability to stain both SP and NFT over 13 years ago, the styrylbenzene derivative, (E,E)-1-fluoro-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene (FSB), has only recently gained attention, primarily due to its ability to function as a contrasting agent for MRI imaging of AD pathology in vivo. The structure of the compound is a nuclide with quantized angular momentum, which explains its value as a contrast agent. In the current study, modification of the established staining procedure produced meaningful improvement in the labeling of plaques and tangles in the human brain. We utilized two rodent models of AD to show FSB's value in labeling both Aß and tau lesions. Furthermore, our current modification allows us to detect SP in rodent brains in 15 min and both SP and NFT in human brains within 20 min. The study presents new evidence regarding potential binding targets for FSB as well as optimization protocols in which various parameters have been manipulated to show how section thickness, use of frozen versus paraffin-embedded sections, and selection of staining media can affect the intensity of the plaque and tangle staining in the brain. To determine the target FSB potentially binds, we performed double immunolabeling of FSB with mOC64 (a conformational antibody that label Aß1-42). Results indicated that all plaques in the brain colocalized with mOC64, suggesting that FSB has the potential to bind all Aß containing plaques, making it a very sensitive detector of multiple forms of SP... All antibodies were assessed for the degree of colocalization with FSB in order to better understand potential binding targets. We found more than 90% hyperphosphorylated Tau against AT8, AT180 and S214 colocalized with FSB labeled tangles. On the other hand, more than 90% of the mOC64 containing plaques colocalized with FSB stained plaques. Our results indicate that FSB is a valuable marker that can be used to detect AD pathologies in human and rodent brains with greater fluorescence intensity relative to other conventional fluorescence markers.
Assuntos
Doença de Alzheimer , Placa Amiloide , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Humanos , Imageamento por Ressonância Magnética , Emaranhados Neurofibrilares/metabolismo , Placa Amiloide/metabolismo , Proteínas tau/metabolismoRESUMO
Neurotoxicity studies are important in the preclinical stages of drug development process, because exposure to certain compounds that may enter the brain across a permeable blood brain barrier damages neurons and other supporting cells such as astrocytes. This could, in turn, lead to various neurological disorders such as Parkinson's or Huntington's disease as well as various dementias. Toxicity assessment is often done by pathologists after these exposures by qualitatively or semiquantitatively grading the severity of neurotoxicity in histopathology slides. Quantification of the extent of neurotoxicity supports qualitative histopathological analysis and provides a better understanding of the global extent of brain damage. Stereological techniques such as the utilization of an optical fractionator provide an unbiased quantification of the neuronal damage; however, the process is time-consuming. Advent of whole slide imaging (WSI) introduced digital image analysis which made quantification of neurotoxicity automated, faster and with reduced bias, making statistical comparisons possible. Although automated to a certain level, simple digital image analysis requires manual efforts of experts which is time-consuming and limits analysis of large datasets. Digital image analysis coupled with a deep learning artificial intelligence model provides a good alternative solution to time-consuming stereological and simple digital analysis. Deep learning models could be trained to identify damaged or dead neurons in an automated fashion. This review has focused on and discusses studies demonstrating the role of deep learning in segmentation of brain regions, toxicity detection and quantification of degenerated neurons as well as the estimation of area/volume of degeneration.
Assuntos
Inteligência Artificial , Aprendizado Profundo , Toxicologia , Algoritmos , Encéfalo , Redes Neurais de ComputaçãoRESUMO
The organotin, trimethyltin (TMT), is a highly toxic compound. In this study, silver-stained rat brain sections were qualitatively and quantitatively evaluated for degeneration after systemic treatment with TMT. Degenerated neurons were counted using image analysis methods available in the HALO image analysis software. Specific brain areas including the cortex, inferior and superior colliculus, and thalamus were quantitatively analyzed. Our results indicate extensive and widespread damage to the rat brain after systemic administration of TMT. Qualitative results suggest severe TMT-induced toxicity 3 and 7 days after the administration of TMT. Trimethyltin toxicity was greatest in the hippocampus, olfactory area, cerebellum, pons, mammillary nucleus, inferior and superior colliculus, hypoglossal nucleus, thalamus, and cerebellar Purkinje cells. Quantification showed that the optic layer of the superior colliculus exhibited significantly more degeneration compared to layers above and below. The inferior colliculus showed greater degeneration in the dorsal area relative to the central area. Similarly, in cortical layers, there was greater neurodegeneration in deeper layers compared to superficial layers. Quantification of damage in various thalamic nuclei showed that the greatest degeneration occurred in midline and intralaminar nuclei. These results suggest selective neuronal network vulnerability to TMT-related toxicity in the rat brain.
Assuntos
Encéfalo/efeitos dos fármacos , Compostos de Trimetilestanho/toxicidade , Animais , Encéfalo/patologia , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
Safety assessments of new drug candidates are an important part of the drug development and approval process. Often, possible sex-associated susceptibilities are not adequately addressed, and better assessment tools are needed. We hypothesized that hepatic transcript profiles of cytochrome P450 (P450) enzymes can be used to predict sex-associated differences in drug metabolism and possible adverse events. Comprehensive hepatic transcript profiles were generated for F344 rats of both sexes at nine ages, from 2 weeks (preweaning) to 104 weeks (elderly). Large differences in the transcript profiles of 29 drug metabolizing enzymes and transporters were found between adult males and females (8-52 weeks). Using the PharmaPendium data base, 41 drugs were found to be metabolized by one or two P450 enzymes encoded by sexually dimorphic mRNAs and thus were candidates for evaluation of possible sexually dimorphic metabolism and/or toxicities. Suspension cultures of primary hepatocytes from three male and three female adult rats (10-13 weeks old) were used to evaluate the metabolism of 11 drugs predicted to have sexually dimorphic metabolism. The pharmacokinetics of the drug or its metabolite was analyzed by liquid chromatography/tandem mass spectrometry using multiple reaction monitoring. Of those drugs with adequate metabolism, the predicted significant sex-different metabolism was found for six of seven drugs, with half-lives 37%-400% longer in female hepatocytes than in male hepatocytes. Thus, in this rat model, transcript profiles may allow identification of potential sex-related differences in drug metabolism. SIGNIFICANCE STATEMENT: The present study showed that sex-different expression of genes coding for drug metabolizing enzymes, specifically cytochrome P450s, could be used to predict sex-different drug metabolism and, thus, provide a new tool for protecting susceptible subpopulations from possible adverse drug events.
Assuntos
Sistema Enzimático do Citocromo P-450/genética , Regulação Enzimológica da Expressão Gênica , Taxa de Depuração Metabólica/genética , Animais , Células Cultivadas , Sistema Enzimático do Citocromo P-450/metabolismo , Conjuntos de Dados como Assunto , Feminino , Perfilação da Expressão Gênica , Meia-Vida , Hepatócitos , Fígado/enzimologia , Masculino , Modelos Animais , Cultura Primária de Células , Ratos , Ratos Endogâmicos F344 , Fatores SexuaisRESUMO
Although there are multiple histochemical tracers available to label plaques and tangles in the brain to evaluate neuropathology in Alzheimer disease (AD), few of them are versatile in nature and compatible with immunohistochemical procedures. Congo Red (CR) is an anisotropic organic stain discovered to label amyloid beta (Aß) plaques in the brain. Unfortunately, its use is underappreciated due to its low resolution and brightness as stated in previous studies using bright field microscopy. Here, we modified a previous method to localize both plaques and tangles in brains from humans and a transgenic rodent model of AD for fluorescence microscopic visualization. The plaque staining affinities displayed by CR were compared with fibrillar pattern labeling seen with Thioflavin S. This study summarizes the optimization of protocols in which various parameters have been finetuned. To determine the target CR potentially binds, we have performed double labeling with different antibodies against Aß as well as phosphorylated Tau. The plaque staining affinities exhibited by CR are compared with those associated with the diffuse pattern of labeling seen with antibodies directed against different epitopes of Aß. Neither CP13, TNT2 or TOC1 binds all the neurofibrillary tangles as revealed by CR labeling in the human brain. Additionally, we also evaluated double labeling with AT8, AT180, and PHF1. Interestingly, PHF-1 shows 40% colocalization and AT8 shows 15% colocalization with NFT. Thus, CR is a much better marker to detect AD pathologies in human and rodent brains with higher fluorescence intensity relative to other conventional fluorescence markers.
Assuntos
Encéfalo/metabolismo , Corantes/metabolismo , Vermelho Congo/metabolismo , Emaranhados Neurofibrilares/metabolismo , Placa Amiloide/metabolismo , Coloração e Rotulagem/métodos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Química Encefálica/fisiologia , Corantes/análise , Vermelho Congo/análise , Humanos , Camundongos , Camundongos Transgênicos , Emaranhados Neurofibrilares/química , Emaranhados Neurofibrilares/patologia , Imagem Óptica/métodos , Placa Amiloide/química , Placa Amiloide/patologia , Ratos , RoedoresRESUMO
This study consisted of a qualitative and quantitative assessment of neuropathological changes in kainic acid (KA)-treated adult male rats. Rats were administered a single 10 mg/kg intraperitoneal injection of KA or the same volume of saline and sacrificed 24 or 48 hours posttreatment. Brains were collected, sectioned coronally (â¼ 81 slices), and stained with amino cupric silver to reveal degenerative changes. For qualitative assessment of neural degeneration, sectioned material was evaluated by a board-certified pathologist, and the level of degeneration was graded based upon a 4-point scale. For measurement of quantitative neural degeneration in response to KA treatment, the HALO digital image analysis software tool was used. Quantitative measurements of specific regions within the brain were obtained from silver-stained tissue sections with quantitation based on stain color and optical density. This quantitative evaluation method identified degeneration primarily in the cerebral cortex, septal nuclei, amygdala, olfactory bulb, hippocampus, thalamus, and hypothalamus. The KA-produced neuronal degeneration in the cortex was primarily in the piriform, insular, rhinal, and cingulate areas. In the hippocampus, the dentate gyrus was found to be the most affected area. Our findings indicate global neurotoxicity due to KA treatment. Certain brain structures exhibited more degeneration than others, reflecting differential sensitivity or vulnerability of neurons to KA.
Assuntos
Encéfalo/efeitos dos fármacos , Ácido Caínico/toxicidade , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas , Animais , Encéfalo/patologia , Masculino , Neurônios/patologia , Síndromes Neurotóxicas/patologia , Ratos Sprague-DawleyRESUMO
Adverse effects related to central nervous system (CNS) function in pediatric populations may, at times, be difficult, if not impossible to evaluate. Prolonged anesthetic exposure affects brain excitability and anesthesia during the most sensitive developmental stages and has been associated with mitochondrial dysfunction, aberrant lipid metabolism and synaptogenesis, subsequent neuronal damage, as well as long-term behavioral deficits. There has been limited research evaluating whether and how anesthetic agents affect cellular lipids, the most abundant components of the brain other than water. Therefore, this review discusses: (1) whether the observed anesthetic-induced changes in lipid profiles seen in preclinical studies represents early signs of neurotoxicity; (2) the potential mechanisms underlying anesthetic-induced brain injury; and (3) whether lipid biomarker(s) identified in preclinical studies can serve as markers for the early clinical detection of anesthetic-induced neurotoxicity.
Assuntos
Anestesia/efeitos adversos , Anestésicos/efeitos adversos , Encéfalo/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Metabolômica/métodos , Síndromes Neurotóxicas/etiologia , Adolescente , Fatores Etários , Animais , Biomarcadores/sangue , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Criança , Desenvolvimento Infantil/efeitos dos fármacos , Pré-Escolar , Diagnóstico Precoce , Humanos , Lactente , Recém-Nascido , Espectrometria de Massas , Síndromes Neurotóxicas/sangue , Síndromes Neurotóxicas/diagnóstico , Síndromes Neurotóxicas/fisiopatologia , Valor Preditivo dos Testes , Fatores de RiscoRESUMO
Our previous studies have raised the possibility that altered blood glucose levels may influence and/or be predictive of methamphetamine (METH) neurotoxicity. This study evaluated the effects of exogenous glucose and corticosterone (CORT) pretreatment alone or in combination with METH on blood glucose levels and the neural and vascular toxicity produced. METH exposure consisted of four sequential injections of 5, 7.5, 10, and 10 mg/kg (2 h between injections) D-METH. The three groups given METH in combination with saline, glucose (METH+Glucose), or CORT (METH+CORT) had significantly higher glucose levels compared to the corresponding treatment groups without METH except at 3 h after the last injection. At this last time point, the METH and METH+Glucose groups had lower levels than the non-METH groups, while the METH+CORT group did not. CORT alone or glucose alone did not significantly increase blood glucose. Mortality rates for the METH+CORT (40%) and METH+Glucose (44%) groups were substantially higher than the METH (< 10%) group. Additionally, METH+CORT significantly increased neurodegeneration above the other three METH treatment groups (≈ 2.5-fold in the parietal cortex). Thus, maintaining elevated levels of glucose during METH exposure increases lethality and may exacerbate neurodegeneration. Neuroinflammation, specifically microglial activation, was associated with degenerating neurons in the parietal cortex and thalamus after METH exposure. The activated microglia in the parietal cortex were surrounding vasculature in most cases and the extent of microglial activation was exacerbated by CORT pretreatment. Our findings show that acute CORT exposure and elevated blood glucose levels can exacerbate METH-induced vascular damage, neuroinflammation, neurodegeneration and lethality. Cover Image for this issue: doi. 10.1111/jnc.13819.
Assuntos
Glicemia/efeitos dos fármacos , Corticosterona/toxicidade , Glucose/toxicidade , Metanfetamina/toxicidade , Lobo Parietal/efeitos dos fármacos , Tálamo/efeitos dos fármacos , Animais , Glicemia/metabolismo , Corticosterona/administração & dosagem , Combinação de Medicamentos , Glucose/administração & dosagem , Masculino , Metanfetamina/administração & dosagem , Microglia/efeitos dos fármacos , Microglia/metabolismo , Lobo Parietal/irrigação sanguínea , Lobo Parietal/metabolismo , Ratos , Ratos Sprague-Dawley , Tálamo/irrigação sanguínea , Tálamo/metabolismoRESUMO
BACKGROUND: Brain microglial activations and damage responses are most commonly associated with neurodegeneration or systemic innate immune system activation. Here, we used histological methods to focus on microglial responses that are directed towards brain vasculature, previously undescribed, after a neurotoxic exposure to methamphetamine. METHODS: Male rats were given doses of methamphetamine that produce pronounced hyperthermia, hypertension, and toxicity. Identification of microglia and microglia-like cells (pericytes and possibly perivascular cells) was done using immunoreactivity to allograft inflammatory factor 1 (Aif1 a.k.a Iba1) and alpha M integrin (Itgam a.k.a. Cd11b) while vasculature endothelium was identified using rat endothelial cell antigen 1 (RECA-1). Regions of neuronal, axonal, and nerve terminal degeneration were determined using Fluoro-Jade C. RESULTS: Dual labeling of vasculature (RECA-1) and microglia (Iba1) showed a strong association of hypertrophied cells surrounding and juxtaposed to vasculature in the septum, medial dorsal hippocampus, piriform cortex, and thalamus. The Iba1 labeling was more pronounced in the cell body while Cd11b more so in the processes of activated microglia. These regions have been previously identified to have vascular leakage after neurotoxic methamphetamine exposure. Dual labeling with Fluoro-Jade C and Iba1 indicated that there was minimal or no evidence of neuronal damage in the septum and hippocampus where many hypertrophied Iba1-labeled cells were found to be associated with vasculature. Although microglial activation around the prominent neurodegeneration was found in the thalamus, there were also many examples of activated microglia associated with vasculature. CONCLUSIONS: The data implicate microglia, and possibly related cell types, in playing a major role in responding to methamphetamine-induced vascular damage, and possibly repair, in the absence of neurodegeneration. Identifying brain regions with hypertrophied/activated microglial-like cells associated with vasculature has the potential for identifying regions of more subtle examples of vascular damage and BBB compromise.
Assuntos
Vasos Sanguíneos/patologia , Estimulantes do Sistema Nervoso Central/toxicidade , Metanfetamina/toxicidade , Microglia/efeitos dos fármacos , Síndromes Neurotóxicas/patologia , Animais , Antígenos de Superfície/metabolismo , Antígeno CD11b/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Degeneração Neural/induzido quimicamente , Degeneração Neural/patologia , Ratos , Ratos Sprague-DawleyRESUMO
BACKGROUND: Animals exposed to sevoflurane during development sustain neuronal cell death in their developing brains. In vivo micro-positron emission tomography (PET)/computed tomography imaging has been utilized as a minimally invasive method to detect anesthetic-induced neuronal adverse effects in animal studies. METHODS: Neonatal rhesus monkeys (postnatal day 5 or 6, 3 to 6 per group) were exposed for 8 h to 2.5% sevoflurane with or without acetyl-L-carnitine (ALC). Control monkeys were exposed to room air with or without ALC. Physiologic status was monitored throughout exposures. Depth of anesthesia was monitored using quantitative electroencephalography. After the exposure, microPET/computed tomography scans using F-labeled fluoroethoxybenzyl-N-(4-phenoxypyridin-3-yl) acetamide (FEPPA) were performed repeatedly on day 1, 1 and 3 weeks, and 2 and 6 months after exposure. RESULTS: Critical physiologic metrics in neonatal monkeys remained within the normal range during anesthetic exposures. The uptake of [F]-FEPPA in the frontal and temporal lobes was increased significantly 1 day or 1 week after exposure, respectively. Analyses of microPET images recorded 1 day after exposure showed that sevoflurane exposure increased [F]-FEPPA uptake in the frontal lobe from 0.927 ± 0.04 to 1.146 ± 0.04, and in the temporal lobe from 0.859 ± 0.05 to 1.046 ± 0.04 (mean ± SE, P < 0.05). Coadministration of ALC effectively blocked the increase in FEPPA uptake. Sevoflurane-induced adverse effects were confirmed by histopathologic evidence as well. CONCLUSIONS: Sevoflurane-induced general anesthesia during development increases glial activation, which may serve as a surrogate for neurotoxicity in the nonhuman primate brain. ALC is a potential protective agent against some of the adverse effects associated with such exposures.
Assuntos
Anestésicos Inalatórios/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico por imagem , Éteres Metílicos/efeitos adversos , Tomografia por Emissão de Pósitrons/métodos , Anestesia Geral , Anilidas , Animais , Animais Recém-Nascidos , Eletroencefalografia/efeitos dos fármacos , Feminino , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/metabolismo , Processamento de Imagem Assistida por Computador , Macaca mulatta , Masculino , Piridinas , Compostos Radiofarmacêuticos , Sevoflurano , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/metabolismo , Tomografia Computadorizada por Raios XRESUMO
Modified 3D-SDAR fingerprints combining (13)C and (15)N NMR chemical shifts augmented with inter-atomic distances were used to model the potential of chemicals to induce phospholipidosis (PLD). A curated dataset of 328 compounds (some of which were cationic amphiphilic drugs) was used to generate 3D-QSDAR models based on tessellations of the 3D-SDAR space with grids of different density. Composite PLS models averaging the aggregated predictions from 100 fully randomized individual models were generated. On each of the 100 runs, the activities of an external blind test set comprised of 294 proprietary chemicals were predicted and averaged to provide composite estimates of their PLD-inducing potentials (PLD+ if PLD is observed, otherwise PLD-). The best performing 3D-QSDAR model utilized a grid with a density of 8ppm×8ppm in the C-C region, 8ppm×20ppm in the C-N region and 20ppm×20ppm in the N-N region. The classification predictive performance parameters of this model evaluated on the basis of the external test set were as follows: accuracy=0.70, sensitivity=0.73 and specificity=0.66. A projection of the most frequently occurring bins on the standard coordinate space suggested a toxicophore composed of an aromatic ring with a centroid 3.5-7.5Å distant from an amino-group. The presence of a second aromatic ring separated by a 4-5Å spacer from the first ring and at a distance of between 5.5Å and 7Å from the amino-group was also associated with a PLD+ effect. These models provide comparable predictive performance to previously reported models for PLD with the added benefit of being based entirely on non-confidential, publicly available training data and with good predictive performance when tested in a rigorous, external validation exercise.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Fosfolipídeos/metabolismo , Relação Quantitativa Estrutura-Atividade , Tensoativos/química , Algoritmos , Isótopos de Carbono , Dermatoglifia , Espectroscopia de Ressonância Magnética , Isótopos de Nitrogênio , Fosfolipídeos/química , Tensoativos/farmacologiaRESUMO
MRI was utilized to probe T2 changes in living brain following exposure of rats to one of ten classical neurotoxicants. Brains were subsequently perfused for classical neuropathology examination. This approach was predicated on the assumption that the T2 changes represent loci of neurotoxicity encompassing those seen using neuropathology techniques. The traditional neurotoxicologic approach of selecting a few arbitrary brain sections is dramatically improved by MRI targeting that can indicate the location(s) at which to collect "smart sections" for subsequent workup. MRI scans can provide the equivalent of 64 coronal sections; the number estimated for full coverage of the rat brain if only traditional neuropathology is utilized. Use of MRI allows each animal to serve as its own control as well as longitudinal observations of the life cycle of the neurotoxic lesion(s) (inception, apex and regression). Optimization of time of sacrifice and selection of an appropriate stain based on MRI-identified brain areas could be greatly enhanced should this approach prove successful. The application of full brain MRI imaging that informs neuropathology offers the potential to dramatically improve detection of neurotoxicity produced by new drugs and facilitate new drug development, review and approval processes, and to qualify an imaging biomarker of neuropathology.
Assuntos
Encéfalo/efeitos dos fármacos , Neurotoxinas/toxicidade , Animais , Encéfalo/patologia , Encéfalo/fisiologia , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Masculino , Síndromes Neurotóxicas/patologia , Ratos Sprague-DawleyRESUMO
BACKGROUND: A plethora of studies has shown the utility of several chemical dyes due to their affinity to bind Aß to enable visualization of plaques under light or fluorescence microscope, and some of them showed affinity to bind neurofibrillary tangles (NFT) as well. However, only a few of them have the propensity to bind both senile plaques (SP) and NFT simultaneously. OBJECTIVE: In our current study, we aimed to modify the K114 dye and the staining procedure to substantially improve the staining of amyloid plaques in both human and rodent brains and neurofibrillary tangles in the human brain. METHODS: We modified the K114 solution and the staining procedure using Sudan Black as a modifier. Additionally, to evaluate the target of the modified K114, we performed double labeling of K114 and increased Aß against three different epitopes. We used 5 different antibodies to detect phosphorylated tau to understand the specific targets that modified K114 binds. RESULTS: Dual labeling using hyperphosphorylated antibodies against AT8, pTau, and TNT1 revealed that more than 80% hyperphosphorylated tau colocalized with tangles that were positive for modified K114, whereas more than 70% of the hyperphosphorylated tau colocalized with modified K114. On the other hand, more than 80% of the plaques that were stained with Aß MOAB-2 were colocalized with modified K114. CONCLUSION: Our modified method can label amyloid plaques within 5 min in the rat brain and within 20 min in the human brain. Our results indicated that modified K114 could be used as a valuable tool for detecting amyloid plaques and tangles with high contrast and resolution relative to other conventional fluorescence markers.
Assuntos
Encéfalo , Emaranhados Neurofibrilares , Placa Amiloide , Humanos , Placa Amiloide/patologia , Placa Amiloide/metabolismo , Animais , Emaranhados Neurofibrilares/patologia , Emaranhados Neurofibrilares/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Masculino , Proteínas tau/metabolismo , Ratos , Idoso , Feminino , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Coloração e Rotulagem/métodos , Idoso de 80 Anos ou maisRESUMO
BACKGROUND: The meninges (arachnoid and pial membranes) and associated vasculature (MAV) and choroid plexus are important in maintaining cerebrospinal fluid (CSF) generation and flow. MAV vasculature was previously observed to be adversely affected by environmentally-induced hyperthermia (EIH) and more so by a neurotoxic amphetamine (AMPH) exposure. Herein, microarray and RT-PCR analysis was used to compare the gene expression profiles between choroid plexus and MAV under control conditions and at 3 hours and 1 day after EIH or AMPH exposure. Since AMPH and EIH are so disruptive to vasculature, genes related to vasculature integrity and function were of interest. RESULTS: Our data shows that, under control conditions, many of the genes with relatively high expression in both the MAV and choroid plexus are also abundant in many epithelial tissues. These genes function in transport of water, ions, and solutes, and likely play a role in CSF regulation. Most genes that help form the blood-brain barrier (BBB) and tight junctions were also highly expressed in MAV but not in choroid plexus. In MAV, exposure to EIH and more so to AMPH decreased the expression of BBB-related genes such as Sox18, Ocln, and Cldn5, but they were much less affected in the choroid plexus. There was a correlation between the genes related to reactive oxidative stress and damage that were significantly altered in the MAV and choroid plexus after either EIH or AMPH. However, AMPH (at 3 hr) significantly affected about 5 times as many genes as EIH in the MAV, while in the choroid plexus EIH affected more genes than AMPH. Several unique genes that are not specifically related to vascular damage increased to a much greater extent after AMPH compared to EIH in the MAV (Lbp, Reg3a, Reg3b, Slc15a1, Sct and Fst) and choroid plexus (Bmp4, Dio2 and Lbp). CONCLUSIONS: Our study indicates that the disruption of choroid plexus function and damage produced by AMPH and EIH is significant, but the changes may not be as pronounced as they are in the MAV, particularly for AMPH. Expression profiles in the MAV and choroid plexus differed to some extent and differences were not restricted to vascular related genes.
Assuntos
Encéfalo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Plexo Corióideo/metabolismo , Meninges/metabolismo , Anfetamina/toxicidade , Aracnoide-Máter/irrigação sanguínea , Aracnoide-Máter/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Plexo Corióideo/irrigação sanguínea , Plexo Corióideo/efeitos dos fármacos , Meio Ambiente , Febre , Humanos , Meninges/irrigação sanguínea , Meninges/efeitos dos fármacos , Proteínas Associadas a Pancreatite , TranscriptomaRESUMO
The assessment of the sensitivity and specificity of any potential biomarker against the gold standard is an important step in the process of its qualification by regulatory authorities. Such qualification is an important step towards incorporating the biomarker into the panel of tools available for drug development. In the current study we analyzed the sensitivity and specificity of T2 MRI relaxometry to detect trimethyltin-induced neurotoxicity in rats. Seventy-five male Sprague-Dawley rats were injected with a single intraperitoneal dose of either TMT (8, 10, 11, or 12 mg/kg) or saline (2 ml/kg) and imaged with 7 T MRI before and 3, 7, 14, and 21 days after injection using a quantitative T2 mapping. Neurohistopathology (the gold standard in the case of neurotoxicity) was performed at the end of the observation and used as an outcome qualifier in receiver-operator characteristic (ROC) curve analysis of T2 changes as a predictor of neurotoxicity. TMT treatment led to a significant increase in T2 values in many brain areas. The biggest changes in T2 values were seen around the lateral ventricles, which was interpreted as ventricular dilation. The area under the ROC curve for the volume of the lateral ventricles was 0.878 with the optimal sensitivity/specificity of 0.805/0.933, respectively. T2 MRI is a promising method for generating a non-invasive biomarkers of neurotoxicity, which shows the dose-response behavior with substantial sensitivity and specificity. While its performance was strong in the TMT model, further characterization of the sensitivity and specificity of T2 MRI with other neurotoxicants is warranted.
Assuntos
Imageamento por Ressonância Magnética , Síndromes Neurotóxicas , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Síndromes Neurotóxicas/diagnóstico por imagem , Síndromes Neurotóxicas/patologia , BiomarcadoresRESUMO
Neurotoxicity assessments are generally performed using laboratory animals. However, as in vitro neurotoxicity models are continuously refined to reach adequate predicative concordance with in vivo responses, they are increasingly used for some endpoints of neurotoxicity. In this study, gestational day 80 fetal rhesus monkey brain tissue was obtained for neural stem cells (NSCs) isolation. Cells from the entire hippocampus were harvested, mechanically dissociated, and cultured for proliferation and differentiation. Immunocytochemical staining and biological assays demonstrated that the harvested hippocampal cells exhibited typical NSC phenotypes in vitro: (1) cells proliferated vigorously and expressed NSC markers nestin and sex-determining region Y-box 2 (SOX2) and (2) cells differentiated into neurons, astrocytes, and oligodendrocytes, as confirmed by positive staining with class III ß-tubulin, glial fibrillary acidic protein, and galactocerebroside, respectively. The NSC produced detectable responses following neurotoxicant exposures (e.g. trimethyltin and 3-nitropropionic acid). Our results indicated that non-human primate NSCs may be a practical tool to study the biology of neural cells and to evaluate the neurotoxicity of chemicals in vitro, thereby providing data that are translatable to humans and may also reduce the number of animals needed for developmental neurotoxicological studies.
Assuntos
Células-Tronco Neurais , Animais , Neurônios/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , EncéfaloRESUMO
Cerebral amyloid angiopathy or CAA is a type of vascular dementia that can cause neuroinflammation, ischemia and hemorrhage, among other complications. CAA results from the deposition of amyloid beta (Aß) in blood vessels and is frequently observed in individuals with Alzheimer's disease (AD). One functional output of those pathological changes is measurable cognitive decline. Still not well understood, however, is the impact of gender or sex on the pathology of CAA, as well as CAA-induced cognitive decline. Here, we studied how sex impacts deposition of CAA-related pathology and the associated cognitive decline. We observed differential hippocampal pathology as far as regions of deposition, type of morphology, and total amount of pathology when assessing CAA pathology via (E,E)-1-fluoro-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene (FSB)-labeling, as well as neurodegeneration via Fluoro Jade C (FJC)-labeling, and lysosomal associated membrane protein deposition via LAMP-1 labeling. In accordance with other studies, our data suggest female TG-SwDI mice exhibit more severe pathological alterations in CAA pathology. Additionally, behavioral assessments revealed an impact of genotype that was more pronounced in TG-SwDI females. While the primary measure of learning and memory, the water maze, suggests an overall effect of genotype, effects in measures of locomotor activity and anxiety-like behavior suggest reduced habituation in females. This could be due to a lower retention for the tasks. Results of this study offer significant insight into the importance of examining effects of sex on CAA.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/metabolismo , Animais , Cognição , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos TransgênicosRESUMO
BACKGROUND: Congo Red (CR) has been used for its binding affinity to amyloid fibrils for the better part of a century. Recently, our laboratory has demonstrated its ability to bind to tau protein as well. NEW METHOD: Here we describe a novel methodology for fast, thorough, whole-brain labeling of amyloid plaques with CR via perfusion. We tested five different variants which altered the volume of CR, the speed of perfusion, and the solution CR was solubilized in to determine the best results. RESULTS AND CONCLUSION: We determined that intra-cardiac perfusion of animals with 0.5 % CR in 100 ml of 50 % ethanol or perfusion with 0.5 of CR in 100 ml of 10 % neutral buffer formalin both perfused at a rate of 30 ml/min for 3.3 min resulted in the clearest CR labeling, with little to no background noise. Both variants were compatible with subsequent immunolabeling procedures for NU-1, as well as Ferritin and GFAP. Compared to traditional CR plaque labeling methodology, this new method allows for quick whole brain CR-labeling. This reduces the amount of time from days to mere minutes. It also reduces potential for variability that would result from staining slides in batches. Thus, CR-perfusion is a rapid, thorough method that can be utilized to rapidly stain amyloid in the rodent brain.