Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 47(23): 13284-93, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24256473

RESUMO

Radioactive waste containing a few grams of plutonium (Pu) was disposed between 1960 and 1968 in trenches at the Little Forest Burial Ground (LFBG), near Sydney, Australia. A water sampling point installed in a former trench has enabled the radionuclide content of trench water and the response of the water level to rainfall to be studied. The trench water contains readily measurable Pu activity (~12 Bq/L of (239+240)Pu in 0.45 µm-filtered water), and there is an associated contamination of Pu in surface soils. The highest (239+240)Pu soil activity was 829 Bq/kg in a shallow sample (0-1 cm depth) near the trench sampling point. Away from the trenches, the elevated concentrations of Pu in surface soils extend for tens of meters down-slope. The broader contamination may be partly attributable to dispersion events in the first decade after disposal, after which a layer of soil was added above the trenched area. Since this time, further Pu contamination has occurred near the trench-sampler within this added layer. The water level in the trench-sampler responds quickly to rainfall and intermittently reaches the surface, hence the Pu dispersion is attributed to saturation and overflow of the trenches during extreme rainfall events, referred to as the 'bathtub' effect.


Assuntos
Monitoramento Ambiental/estatística & dados numéricos , Locais de Resíduos Perigosos/estatística & dados numéricos , Plutônio/análise , Resíduos Radioativos/análise , Poluentes Radioativos do Solo/análise , Poluentes Radioativos da Água/análise , Monitoramento Ambiental/métodos , New South Wales , Contagem de Cintilação
2.
Sci Total Environ ; 817: 152606, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35007575

RESUMO

The application of N fertilisers to enhance crop yield is common throughout the world. Many crops have historically been, or are still, fertilised with N in excess of the crop requirements. A portion of the excess N is transported into underlying aquifers in the form of NO3-, which is potentially discharged to surface waters. Denitrification can reduce the severity of NO3- export from groundwater. We sought to understand the occurrence and hydrogeochemical controls on denitrification in NO3--rich aquifers beneath the Emerald Irrigation Area (EIA), Queensland, Australia, a region of extensive cotton and cereal production. Multiple stable isotope (in H2O, NO3-, DIC, DOC and SO42-) and radioactive isotope (3H and 36Cl) tracers were used to develop a conceptual N process model. Fertiliser-derived N is likely incorporated and retained in the soil organic N pool prior to its mineralisation, nitrification, and migration into aquifers. This process, alongside the near absence of other anthropogenic N sources, results in a homogenised groundwater NO3- isotopic signature that allows for denitrification trends to be distinguished. Regional-scale denitrification manifests as groundwater becomes increasingly anaerobic during flow from an upgradient basalt aquifer to a downgradient alluvial aquifer. Dilution and denitrification occurs in localised electron donor-rich suboxic hyporheic zones beneath leaking irrigation channels. Using approximated isotope enrichment factors, estimates of regional-scale NO3- removal ranges from 22 to 93% (average: 63%), and from 57 to 91% (average: 79%) beneath leaking irrigation channels. In the predominantly oxic upgradient basalt aquifer, raised groundwater tables create pathways for NO3- to be transported to adjacent surface waters. In the alluvial aquifer, the transfer of NO3- is limited both physically (through groundwater-surface water disconnection) and chemically (through denitrification). These observations underscore the need to understand regional- and local-scale hydrogeological processes when assessing the impacts of groundwater NO3- on adjacent and end of system ecosystems.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Desnitrificação , Ecossistema , Monitoramento Ambiental/métodos , Nitratos/análise , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 830: 154706, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35331767

RESUMO

Increasing concentrations of Rare Earth Elements (REE) plus yttrium (REY) are entering the environment due to human activities. The similar chemical behaviour across the whole REY, i.e. the lanthanide series (lanthanum to lutetium) and yttrium, allows their use as tracers, fingerprinting rock-forming processes and fluid-rock interactions in earth science systems. However, their use in fingerprinting waste and particularly low-level radioactive waste has not received much attention, despite the direct use of REE in the nuclear industry and the traditional use of REE as proxies to understand the environmental mobility of the actinide series (actinium to lawrencium). The highly instrumented low-level radioactive waste site at Little Forest (Australia) allows a detailed REY study, investigating interactions with local strata, neighbouring waste forms and shallow groundwater flows. Groundwater samples and solids from cored materials were recovered from 2007 to 2012 from the study site and regional baseline sites in the same geological materials. The REY in water samples were analysed by automated chelation pre-concentration (SeaFast, ESI) followed by ICP-MS determination, while solid samples were analysed using Neutron Activation Analysis (NAA) and X-ray fluorescence scanning (ITRAX). Solid rocks showed no REY departed from typical Upper Crust compositions in either Little Forest or regional background sites. Shallow groundwater from ~4-5 m, at or slightly below waste trench levels, showed water-waste interaction as a marked enrichment, relative to shale-normalised patterns, in samarium, europium and gadolinium, with depleted yttrium. Leachate samples from the neighbouring urban landfill show different REY normalised patterns. REY distribution changes with depth through increased interaction with shales and sandstones. Variations in pH and redox conditions lead to widespread precipitation of Fe-hydroxides, which scavenge REY with differential uptake by precipitating solids, resulting in increases in Y and higher Y/Ho ratio in the groundwater along the flow path. Our study revealed that the Little Forest low-level radioactive waste has a REY fingerprint different to that of groundwater in surrounding land uses. REY can be used to fingerprint diverse waste sources, assess the mobility of lanthanides inferring the mobility of selected actinides, and to trace the fate of REY during groundwater recharge. The approach presented can refine source allocation and trace pollutant mobility in current and legacy urban, mixed and radioactive waste sites around the world.


Assuntos
Água Subterrânea , Metais Terras Raras , Resíduos Radioativos , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Água Subterrânea/química , Humanos , Metais Terras Raras/análise , Resíduos Radioativos/análise , Água/análise , Poluentes Químicos da Água/análise , Ítrio
4.
Sci Total Environ ; 703: 134927, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767334

RESUMO

Identifying the source of methane (CH4) in groundwater is often complicated due to various production, degradation and migration pathways, particularly in settings where there are multiple groundwater recharge pathways. This study demonstrates the ability to constrain the origin of CH4 within an alluvial aquifer that could be sourced from in situ microbiological production or underlying formations at depth. To characterise the hydrochemical and microbiological processes active within the alluvium, previously reported hydrochemical data (major ion chemistry and isotopic tracers (3H, 14C, 36Cl)) were interpreted in the context of CH4 and carbon dioxide (CO2) isotopic chemistry, and the microbial community composition in the groundwater. The rate of observed oxidation of CH4 within the aquifer was then characterised using a Rayleigh fractionation model. The stratification of the hydrochemical facies and microbiological community populations is interpreted to be a result of the gradational mixing of water from river leakage and floodwater recharge with water from basal artesian inflow. Within the aquifer there is a low abundance of methanogenic archaea indicating that there is limited biological potential for microbial CH4 production. Our results show that the resulting interconnection between hydrochemistry and microbial community composition affects the occurrence and oxidation of CH4 within the alluvial aquifer, constraining the source of CH4 in the groundwater to the geological formations beneath the alluvium.


Assuntos
Monitoramento Ambiental , Água Subterrânea/química , Metano/análise , Poluentes Químicos da Água/análise , Archaea , Movimentos da Água
5.
Sci Rep ; 8(1): 6059, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643384

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

6.
Sci Rep ; 7(1): 8314, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28814720

RESUMO

Methane concentration in caves is commonly much lower than the external atmosphere, yet the cave CH4 depletion causal mechanism is contested and dynamic links to external diurnal and seasonal temperature cycles unknown. Here, we report a continuous 3-year record of cave methane and other trace gases in Jenolan Caves, Australia which shows a seasonal cycle of extreme CH4 depletion, from ambient ~1,775 ppb to near zero during summer and to ~800 ppb in winter. Methanotrophic bacteria, some newly-discovered, rapidly consume methane on cave surfaces and in external karst soils with lifetimes in the cave of a few hours. Extreme bacterial selection due to the absence of alternate carbon sources for growth in the cave environment has resulted in an extremely high proportion 2-12% of methanotrophs in the total bacteria present. Unexpected seasonal bias in our cave CH4 depletion record is explained by a three-step process involving methanotrophy in aerobic karst soil above the cave, summer transport of soil-gas into the cave through epikarst, followed by further cave CH4 depletion. Disentangling cause and effect of cave gas variations by tracing sources and sinks has identified seasonal speleothem growth bias, with implied palaeo-climate record bias.

7.
Sci Rep ; 5: 15996, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26530701

RESUMO

Coal seam gas (CSG) production can have an impact on groundwater quality and quantity in adjacent or overlying aquifers. To assess this impact we need to determine the background groundwater chemistry and to map geological pathways of hydraulic connectivity between aquifers. In south-east Queensland (Qld), Australia, a globally important CSG exploration and production province, we mapped hydraulic connectivity between the Walloon Coal Measures (WCM, the target formation for gas production) and the overlying Condamine River Alluvial Aquifer (CRAA), using groundwater methane (CH4) concentration and isotopic composition (δ(13)C-CH4), groundwater tritium ((3)H) and dissolved organic carbon (DOC) concentration. A continuous mobile CH4 survey adjacent to CSG developments was used to determine the source signature of CH4 derived from the WCM. Trends in groundwater δ(13)C-CH4 versus CH4 concentration, in association with DOC concentration and (3)H analysis, identify locations where CH4 in the groundwater of the CRAA most likely originates from the WCM. The methodology is widely applicable in unconventional gas development regions worldwide for providing an early indicator of geological pathways of hydraulic connectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA