Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
J Infect Dis ; 229(3): 743-752, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38349333

RESUMO

BACKGROUND: The histone deacetylase inhibitor vorinostat (VOR) can reverse human immunodeficiency virus type 1 (HIV-1) latency in vivo and allow T cells to clear infected cells in vitro. HIV-specific T cells (HXTCs) can be expanded ex vivo and have been safely administered to people with HIV (PWH) on antiretroviral therapy. METHODS: Six PWH received infusions of 2 × 107 HXTCs/m² with VOR 400 mg, and 3 PWH received infusions of 10 × 107 HXTCs/m² with VOR. The frequency of persistent HIV by multiple assays including quantitative viral outgrowth assay (QVOA) of resting CD4+ T cells was measured before and after study therapy. RESULTS: VOR and HXTCs were safe, and biomarkers of serial VOR effect were detected, but enhanced antiviral activity in circulating cells was not evident. After 2 × 107 HXTCs/m² with VOR, 1 of 6 PWH exhibited a decrease in QVOA, and all 3 PWH exhibited such declines after 10 × 107 HXTCs/m² and VOR. However, most declines did not exceed the 6-fold threshold needed to definitively attribute decline to the study intervention. CONCLUSIONS: These modest effects provide support for the strategy of HIV latency reversal and reservoir clearance, but more effective interventions are needed to yield the profound depletion of persistent HIV likely to yield clinical benefit. Clinical Trials Registration. NCT03212989.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Vorinostat/uso terapêutico , Vorinostat/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/farmacologia , Linfócitos T CD4-Positivos , Terapia Baseada em Transplante de Células e Tecidos , Latência Viral
2.
Am J Transplant ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643944

RESUMO

Reactivation or primary infection with double-stranded DNA viruses is common in recipients of solid organ transplants (SOTs) and is associated with significant morbidity and mortality. Treatment with conventional antiviral medications is limited by toxicities, resistance, and a lack of effective options for adenovirus (ADV) and BK polyomavirus (BKPyV). Virus-specific T cells (VSTs) have been shown to be an effective treatment for infections with ADV, BKPyV, cytomegalovirus (CMV), and Epstein-Barr virus (EBV). Most of these studies have been conducted in stem cell recipients, and no large studies have been published in the SOT population to date. In this study, we report on the outcome of quadrivalent third-party VST infusions in 98 recipients of SOTs in the context of an open-label phase 2 trial. The 98 patients received a total of 181 infusions, with a median of 2 infusions per patient. The overall response rate was 45% for BKPyV, 65% for cytomegalovirus, 68% for ADV, and 61% for Epstein-Barr virus. Twenty percent of patients with posttransplant lymphoproliferative disorder had a complete response and 40% of patients had a partial response. All the VST infusions were well tolerated. We conclude that VSTs are safe and effective in the treatment of viral infections in SOT recipients.

3.
Cytotherapy ; 26(2): 103-112, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37943204

RESUMO

Quality control testing and analytics are critical for the development and manufacture of cell and gene therapies, and flow cytometry is a key quality control and analytical assay that is used extensively. However, the technical scope of characterization assays and safety assays must keep apace as the breadth of cell therapy products continues to expand beyond hematopoietic stem cell products into producing novel adoptive immune therapies and gene therapy products.  Flow cytometry services are uniquely positioned to support the evolving needs of cell therapy facilities, as access to flow cytometers, new antibody clones and improved fluorochrome reagents becomes more egalitarian. This report will outline the features, logistics, limitations and the current state of flow cytometry within the context of cellular therapy.


Assuntos
Anticorpos , Corantes Fluorescentes , Citometria de Fluxo , Controle de Qualidade , Terapia Genética
4.
Cytotherapy ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38944797

RESUMO

As the field of cell and gene therapy (CGT) continues to grow, so too must the infrastructure and regulatory guidance supporting the manufacture of these potentially life-saving products-especially early-phase products manufactured at an increasing number of academic or hospital-based facilities providing decentralized (or point of care) manufacturing. An important component of current good manufacturing practices, including those regulating cell and gene therapies, is the establishment of an effective environmental monitoring (EM) program. While several guidelines for establishing an EM program are available, these guidelines do not specifically address the unique aspects of manufacturing CGT products and they do not provide real-world evidence demonstrating the effectiveness of the program. Here, we describe the establishment and evolution of an EM program in a cell therapy manufacturing facility at an academic hospital. With 10 years of EM data, we analyze the effectiveness for identifying trends in environmental conditions and highlight important findings, with the aim of providing practical evidence and guidance for the development of future early-phase EM programs.

5.
Cytotherapy ; 26(7): 778-784, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583170

RESUMO

BACKGROUND: Significant advancements have been made in the field of cellular therapy as anti-cancer treatments, with the approval of chimeric antigen receptor (CAR)-T cell therapies and the development of other genetically engineered cellular therapies. CAR-T cell therapies have demonstrated remarkable clinical outcomes in various hematological malignancies, establishing their potential to change the current cancer treatment paradigm. Due to the increasing importance of genetically engineered cellular therapies in the oncology treatment landscape, implementing strategies to expedite development and evidence generation for the next generation of cellular therapy products can have a positive impact on patients. METHODS: We outline a risk-based methodology and assessment aid for the data extrapolation approach across related genetically engineered cellular therapy products. This systematic data extrapolation approach has applicability beyond CAR-T cells and can influence clinical development strategies for a variety of immune therapies such as T cell receptor (TCR) or genetically engineered and other cell-based therapies (e.g., tumor infiltrating lymphocytes, natural killer cells and macrophages). RESULTS: By analyzing commonalities in manufacturing processes, clinical trial designs, and regulatory considerations, key learnings were identified. These insights support optimization of the development and regulatory approval of novel cellular therapies. CONCLUSIONS: The field of cellular therapy holds immense promise in safely and effectively treating cancer. The ability to extrapolate data across related products presents opportunities to streamline the development process and accelerate the delivery of novel therapies to patients.


Assuntos
Engenharia Genética , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Engenharia Genética/métodos , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia
6.
Cytotherapy ; 25(1): 20-32, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36280438

RESUMO

BACKGROUND AIMS: The field of cell and gene therapy in oncology has moved rapidly since 2017 when the first cell and gene therapies, Kymriah followed by Yescarta, were approved by the Food and Drug Administration in the United States, followed by multiple other countries. Since those approvals, several new products have gone on to receive approval for additional indications. Meanwhile, efforts have been made to target different cancers, improve the logistics of delivery and reduce the cost associated with novel cell and gene therapies. Here, we highlight various cell and gene therapy-related technologies and advances that provide insight into how these new technologies will speed the translation of these therapies into the clinic. CONCLUSIONS: In this review, we provide a broad overview of the current state of cell and gene therapy-based approaches for cancer treatment - discussing various effector cell types and their sources, recent advances in both CAR and non-CAR genetic modifications, and highlighting a few promising approaches for increasing in vivo efficacy and persistence of therapeutic drug products.


Assuntos
Imunoterapia Adotiva , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Terapia Genética , Edição de Genes
7.
Blood ; 136(25): 2905-2917, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33331927

RESUMO

T-cell responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been described in recovered patients, and may be important for immunity following infection and vaccination as well as for the development of an adoptive immunotherapy for the treatment of immunocompromised individuals. In this report, we demonstrate that SARS-CoV-2-specific T cells can be expanded from convalescent donors and recognize immunodominant viral epitopes in conserved regions of membrane, spike, and nucleocapsid. Following in vitro expansion using a good manufacturing practice-compliant methodology (designed to allow the rapid translation of this novel SARS-CoV-2 T-cell therapy to the clinic), membrane, spike, and nucleocapsid peptides elicited interferon-γ production, in 27 (59%), 12 (26%), and 10 (22%) convalescent donors (respectively), as well as in 2 of 15 unexposed controls. We identified multiple polyfunctional CD4-restricted T-cell epitopes within a highly conserved region of membrane protein, which induced polyfunctional T-cell responses, which may be critical for the development of effective vaccine and T-cell therapies. Hence, our study shows that SARS-CoV-2 directed T-cell immunotherapy targeting structural proteins, most importantly membrane protein, should be feasible for the prevention or early treatment of SARS-CoV-2 infection in immunocompromised patients with blood disorders or after bone marrow transplantation to achieve antiviral control while mitigating uncontrolled inflammation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , COVID-19/imunologia , Técnicas de Cultura de Células/métodos , Imunoterapia Adotiva/métodos , SARS-CoV-2/imunologia , Adulto , Idoso , Epitopos de Linfócito T/imunologia , Feminino , Humanos , Epitopos Imunodominantes/imunologia , Masculino , Proteínas de Membrana/imunologia , Pessoa de Meia-Idade , Proteínas Virais/imunologia , Adulto Jovem , Tratamento Farmacológico da COVID-19
8.
Cytotherapy ; 24(1): 27-31, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34810083

RESUMO

There is considerable interest in the next generation of personalized medicine, especially cell and gene therapy products such as chimeric antigen receptor T cells (CAR-Ts). Unlike other small molecules or pharmacologic drugs, most existing cell or cell-based gene therapy products (CGTs) require apheresis collection of the patient or donor, subsequent manufacture of the product, and final shipment of the product to the clinical site for infusion. Whereas traditional pharmaceutical drugs have involved the drug sponsor and the clinical site and clinical pharmacy, this new manufacturing paradigm has evolved, in many cases, to include an apheresis center, a cell processing lab, the sponsor's manufacturing facility, and a clinical site with or without a pharmacy. Here we report the results of a survey of current practices handling investigational CGTs conducted by the Immuno-Gene Therapy committee of the International Society of Cell and Gene Therapy.


Assuntos
Farmácia , Receptores de Antígenos Quiméricos , Terapia Genética , Hospitais , Humanos , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/genética
9.
Cytotherapy ; 23(2): 157-164, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33189573

RESUMO

``Cellular therapies first emerged as specialized therapies only available at a few "boutique" centers worldwide. To ensure broad access to these investigational therapies-regardless of geography, demographics and other factors-more and more academic clinical trials are becoming multi-center. Such trials are typically performed with a centralized manufacturing facility receiving the starting material and shipping the final product, either fresh or cryopreserved, to the patient's institution for infusion. As these academic multi-center trials increase in number, it is critical to have procedures and training programs in place to allow these sites that are remote from the production facility to successfully participate in these trials and satisfy regulatory compliance and patient safety best practices. Based on the collective experience of the Consortium for Pediatric Cellular Immunotherapy, the authors summarize the challenges encountered by institutions in shipping and receiving the starting material and final product as well as preparing the final product for infusion. The authors also discuss best practices implemented by each of the consortia institutions to overcome these challenges.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Laboratórios , Criança , Ensaios Clínicos como Assunto , Criopreservação , Humanos , Imunoterapia , Instalações Industriais e de Manufatura
10.
Cytotherapy ; 23(1): 65-76, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32921560

RESUMO

Infusion of viral-specific T cells (VSTs) is an effective treatment for viral infection after stem cell transplant. Current manufacturing approaches are rapid, but growth conditions can still be further improved. To optimize VST cell products, the authors designed a high-throughput flow cytometry-based assay using 40 cytokine combinations in a 96-well plate to fully characterize T-cell viability, function, growth and differentiation. Peripheral blood mononuclear cells (PBMCs) from six consenting donors were seeded at 100 000 cells per well with pools of cytomegalovirus peptides from IE1 and pp65 and combinations of IL-15, IL-6, IL-21, interferon alpha, IL-12, IL-18, IL-4 and IL-7. Ten-day cultures were tested by 13-color flow cytometry to evaluate viable cell count, lymphocyte phenotype, memory markers and interferon gamma (IFNγ) and tumor necrosis factor alpha (TNFα) expression. Combinations of IL-15/IL-6 and IL-4/IL-7 were optimal for the expansion of viral-specific CD3+ T cells, (18-fold and 14-fold, respectively, compared with unstimulated controls). CD8+ T cells expanded 24-fold in IL-15/IL-6 and 9-fold in IL-4/IL-7 cultures (P < 0.0001). CD4+ T cells expanded 27-fold in IL-4/IL-7 and 15-fold in IL-15/IL-6 (P < 0.0001). CD45RO+ CCR7- effector memory (CD45RO+ CCR7- CD3+), central memory (CD45RO+ CCR7+ CD3+), terminal effector (CD45RO- CCR7- CD3+), and naive (CD45RO- CCR7+ CD3+). T cells were the preponderant cells (76.8% and 72.3% in IL-15/IL-6 and IL-15/IL-7 cultures, respectively). Cells cultured in both cytokine conditions were potent, with 19.4% of CD3+ cells cultured in IL-15/IL-6 producing IFNγ (7.6% producing both TNFα and IFNγ) and 18.5% of CD3+ cells grown in IL-4/IL-7 producing IFNγ (9% producing both TNFα and IFNγ). This study shows the utility of this single-plate assay to rapidly identify optimal growth conditions for VST manufacture using only 107 PBMCs.


Assuntos
Antígenos Virais/imunologia , Citocinas/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/fisiologia , Viroses/terapia , Anticorpos/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Citometria de Fluxo , Humanos
11.
Cytotherapy ; 23(8): 694-703, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33832817

RESUMO

BACKGROUND AIMS: Preferentially expressed antigen in melanoma (PRAME) is a cancer/testis antigen that is overexpressed in many human malignancies and poorly expressed or absent in healthy tissues, making it a good target for anti-cancer immunotherapy. Development of an effective off-the-shelf adoptive T-cell therapy for patients with relapsed or refractory solid tumors and hematological malignancies expressing PRAME antigen requires the identification of major histocompatibility complex (MHC) class I and II PRAME antigens recognized by the tumor-associated antigen (TAA) T-cell product. The authors therefore set out to extend the repertoire of HLA-restricted PRAME peptide epitopes beyond the few already characterized. METHODS: Peptide libraries of 125 overlapping 15-mer peptides spanning the entire PRAME protein sequence were used to identify HLA class I- and II-restricted epitopes. The authors also determined the HLA restriction of the identified epitopes. RESULTS: PRAME-specific T-cell products were successfully generated from peripheral blood mononuclear cells of 12 healthy donors. Ex vivo-expanded T cells were polyclonal, consisting of both CD4+ and CD8+ T cells, which elicited anti-tumor activity in vitro. Nine MHC class I-restricted PRAME epitopes were identified (seven novel and two previously described). The authors also characterized 16 individual 15-mer peptide sequences confirmed as CD4-restricted epitopes. CONCLUSIONS: TAA T cells derived from healthy donors recognize a broad range of CD4+ and CD8+ HLA-restricted PRAME epitopes, which could be used to select suitable donors for generating off-the-shelf TAA-specific T cells.


Assuntos
Leucócitos Mononucleares , Melanoma , Antígenos de Neoplasias , Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Humanos , Masculino , Melanoma/terapia , Peptídeos
12.
J Infect Dis ; 221(4): 578-588, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31562500

RESUMO

BACKGROUND: Chronic norovirus infection in immunocompromised patients can be severe, and presently there is no effective treatment. Adoptive transfer of virus-specific T cells has proven to be safe and effective for the treatment of many viral infections, and this could represent a novel treatment approach for chronic norovirus infection. Hence, we sought to generate human norovirus-specific T cells (NSTs) that can recognize different viral sequences. METHODS: Norovirus-specific T cells were generated from peripheral blood of healthy donors by stimulation with overlapping peptide libraries spanning the entire coding sequence of the norovirus genome. RESULTS: We successfully generated T cells targeting multiple norovirus antigens with a mean 4.2 ± 0.5-fold expansion after 10 days. Norovirus-specific T cells comprised both CD4+ and CD8+ T cells that expressed markers for central memory and effector memory phenotype with minimal expression of coinhibitory molecules, and they were polyfunctional based on cytokine production. We identified novel CD4- and CD8-restricted immunodominant epitopes within NS6 and VP1 antigens. Furthermore, NSTs showed a high degree of cross-reactivity to multiple variant epitopes from clinical isolates. CONCLUSIONS: Our findings identify immunodominant human norovirus T-cell epitopes and demonstrate that it is feasible to generate potent NSTs from third-party donors for use in antiviral immunotherapy.


Assuntos
Transferência Adotiva/métodos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Caliciviridae/terapia , Reações Cruzadas/imunologia , Norovirus/imunologia , Doadores de Tecidos , Sequência de Aminoácidos , Antígenos Virais/imunologia , Infecções por Caliciviridae/virologia , Técnicas de Cultura de Células/métodos , Células Cultivadas , Epitopos de Linfócito T/imunologia , Estudos de Viabilidade , Voluntários Saudáveis , Humanos , Hospedeiro Imunocomprometido , Epitopos Imunodominantes/imunologia , Norovirus/genética
13.
Blood ; 132(22): 2351-2361, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30262660

RESUMO

Autologous T cells targeting Epstein-Barr virus (EBV) latent membrane proteins (LMPs) have shown safety and efficacy in the treatment of patients with type 2 latency EBV-associated lymphomas for whom standard therapies have failed, including high-dose chemotherapy followed by autologous stem-cell rescue. However, the safety and efficacy of allogeneic donor-derived LMP-specific T cells (LMP-Ts) have not been established for patients who have undergone allogeneic hematopoietic stem-cell transplantation (HSCT). Therefore, we evaluated the safety and efficacy of donor-derived LMP-Ts in 26 patients who had undergone allogeneic HSCT for EBV-associated natural killer/T-cell or B-cell lymphomas. Seven patients received LMP-Ts as therapy for active disease, and 19 were treated with adjuvant therapy for high-risk disease. There were no immediate infusion-related toxicities, and only 1 dose-limiting toxicity potentially related to T-cell infusion was seen. The 2-year overall survival (OS) was 68%. Additionally, patients who received T-cell therapy while in complete remission after allogeneic HSCT had a 78% OS at 2 years. Patients treated for B-cell disease (n = 10) had a 2-year OS of 80%. Patients with T-cell disease had a 2-year OS of 60%, which suggests an improvement compared with published posttransplantation 2-year OS rates of 30% to 50%. Hence, this study shows that donor-derived LMP-Ts are a safe and effective therapy to prevent relapse after transplantation in patients with B cell- or T cell-derived EBV-associated lymphoma or lymphoproliferative disorder and supports the infusion of LMP-Ts as adjuvant therapy to improve outcomes in the posttransplantation setting. These trials were registered at www.clinicaltrials.gov as #NCT00062868 and #NCT01956084.


Assuntos
Infecções por Vírus Epstein-Barr/complicações , Transplante de Células-Tronco Hematopoéticas/métodos , Herpesvirus Humano 4/imunologia , Linfoma de Células B/terapia , Linfoma de Células T/terapia , Recidiva Local de Neoplasia/prevenção & controle , Linfócitos T/transplante , Adolescente , Adulto , Criança , Pré-Escolar , Infecções por Vírus Epstein-Barr/imunologia , Feminino , Herpesvirus Humano 4/isolamento & purificação , Humanos , Linfoma de Células B/imunologia , Linfoma de Células B/virologia , Linfoma de Células T/imunologia , Linfoma de Células T/virologia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/imunologia , Linfócitos T/imunologia , Transplante Homólogo/métodos , Resultado do Tratamento , Proteínas da Matriz Viral/imunologia , Adulto Jovem
14.
Cytotherapy ; 22(9): 474-481, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32565132

RESUMO

Coronavirus disease 2019 (SARS-CoV2) is an active global health threat for which treatments are desperately being sought. Even though most people infected experience mild to moderate respiratory symptoms and recover with supportive care, certain vulnerable hosts develop severe clinical deterioration. While several drugs are currently being investigated in clinical trials, there are currently no approved treatments or vaccines for COVID-19 and hence there is an unmet need to explore additional therapeutic options. At least three inflammatory disorders or syndromes associated with immune dysfunction have been described in the context of cellular therapy. Specifically, Cytokine Release Syndrome (CRS), Immune Reconstitution Inflammatory Syndrome (IRIS), and Secondary Hemophagocytic Lymphohistiocytosis (sHLH) all have clinical and laboratory characteristics in common with COVID19 and associated therapies that could be worth testing in the context of clinical trials. Here we discuss these diseases, their management, and potential applications of these treatment in the context of COVID-19. We also discuss current cellular therapies that are being evaluated for the treatment of COVID-19 and/or its associated symptoms.


Assuntos
Infecções por Coronavirus/etiologia , Pneumonia Viral/etiologia , Corticosteroides/uso terapêutico , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/fisiopatologia , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/terapia , Humanos , Síndrome Inflamatória da Reconstituição Imune/etiologia , Síndrome Inflamatória da Reconstituição Imune/terapia , Imunização Passiva , Interleucina-1/antagonistas & inibidores , Interleucina-6/antagonistas & inibidores , Células Matadoras Naturais/imunologia , Linfo-Histiocitose Hemofagocítica/etiologia , Linfo-Histiocitose Hemofagocítica/terapia , Pandemias , Plasmaferese , Pneumonia Viral/fisiopatologia , Fatores de Transcrição STAT/antagonistas & inibidores , Tratamento Farmacológico da COVID-19
15.
Transfusion ; 60(1): 7-10, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31469438

RESUMO

Virus-specific T cells allow targeting of multiple pathogens in patients after hematopoietic stem cell transplantation and have demonstrated potential efficacy for cytomegalovirus, Epstein-Barr Virus, and adenovirus. Novel targets may include BK virus, JC virus, varicella zoster virus, human herpesvirus 6, Aspergillus, human parainfluenza virus-3, herpes simplex virus Type I, Zika virus, and mycobacteria. Generation of patient-specific products and third-party products may expand feasibility of therapy.


Assuntos
Transferência Adotiva , Linfócitos T , Viroses , Humanos , Linfócitos T/imunologia , Linfócitos T/patologia , Linfócitos T/transplante , Viroses/imunologia , Viroses/patologia , Viroses/terapia
16.
Pediatr Blood Cancer ; 67(3): e28126, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31850668

RESUMO

Children with ataxia telangiectasia (AT), a primary immunodeficiency caused by mutations in ATM, which is critical for repairing DNA defects, are at risk for the development of hematologic malignancy, frequently driven by infection with Epstein-Barr virus (EBV). Conventional chemotherapy is poorly tolerated by patients with AT, with excessive toxicity even when doses are reduced. Here, we report on two patients with AT and EBV-positive neoplasms who were treated with EBV-targeted viral-specific T cells (VST). One patient had a prolonged complete response to VSTs while the other had a partial response. Therapy was well tolerated without infusion toxicity or graft-versus-host disease.


Assuntos
Ataxia Telangiectasia/terapia , Reparo do DNA/genética , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4/genética , Doença de Hodgkin/terapia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Linfócitos T/transplante , Ataxia Telangiectasia/etiologia , Ataxia Telangiectasia/patologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Criança , Dano ao DNA , Infecções por Vírus Epstein-Barr/virologia , Feminino , Doença de Hodgkin/etiologia , Doença de Hodgkin/patologia , Humanos , Imunoterapia/métodos , Lactente , Masculino , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/etiologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Prognóstico , Linfócitos T/imunologia , Ativação Viral
17.
Br J Haematol ; 187(2): 206-218, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31219185

RESUMO

Viral infections are a serious cause of morbidity and mortality following haematopoietic stem cell transplantation (HSCT). Adoptive cellular therapy with virus-specific T cells (VSTs) has been successful in preventing or treating targeted viruses in prior studies, but the composition of ex vivo expanded VST and the critical cell populations that mediate antiviral activity in vivo are not well defined. We utilized deep sequencing of the T-cell receptor beta chain (TCRB) in order to classify and track VST populations in 12 patients who received VSTs following HSCT to prevent or treat viral infections. TCRB sequencing was performed on sorted VST products and patient peripheral blood mononuclear cells samples. TCRB diversity was gauged using the Shannon entropy index, and repertoire similarity determined using the Morisita-Horn index. Similarity indices reflected an early change in TCRB diversity in eight patients, and TCRB clonotypes corresponding to targeted viral epitopes expanded in eight patients. TCRB repertoire diversity increased in nine patients, and correlated with cytomegalovirus (CMV) viral load following VST infusion (P = 0·0071). These findings demonstrate that allogeneic VSTs can be tracked via TCRB sequencing, and suggests that T-cell receptor repertoire diversity may be critical for the control of CMV reactivation after HSCT.


Assuntos
Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/terapia , Citomegalovirus , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Linfócitos T/transplante , Feminino , Transplante de Células-Tronco Hematopoéticas , Humanos , Masculino , Carga Viral
18.
J Transl Med ; 17(1): 321, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547819

RESUMO

BACKGROUND: Medulloblastoma (MB), the most common pediatric brain cancer, presents with a poor prognosis in a subset of patients with high risk disease, or at recurrence, where current therapies are ineffective. Cord blood (CB) natural killer (NK) cells may be promising off-the-shelf effector cells for immunotherapy due to their recognition of malignant cells without the need for a known target, ready availability from multiple banks, and their potential to expand exponentially. However, they are currently limited by immune suppressive cytokines secreted in the MB tumor microenvironment including Transforming Growth Factor ß (TGF-ß). Here, we address this challenge in in vitro models of MB. METHODS: CB-derived NK cells were modified to express a dominant negative TGF-ß receptor II (DNRII) using retroviral transduction. The ability of transduced CB cells to maintain function in the presence of medulloblastoma-conditioned media was then assessed. RESULTS: We observed that the cytotoxic ability of nontransduced CB-NK cells was reduced in the presence of TGF-ß-rich, medulloblastoma-conditioned media (21.21 ± 1.19% killing at E:T 5:1 in the absence vs. 14.98 ± 2.11% in the presence of medulloblastoma-conditioned media, n = 8, p = 0.02), but was unaffected in CB-derived DNRII-transduced NK cells (21.11 ± 1.84% killing at E:T 5:1 in the absence vs. 21.81 ± 3.37 in the presence of medulloblastoma-conditioned media, n = 8, p = 0.85. We also observed decreased expression of CCR2 in untransduced NK cells (mean CCR2 MFI 826 ± 117 in untransduced NK + MB supernatant from mean CCR2 MFI 1639.29 ± 215 in no MB supernatant, n = 7, p = 0.0156), but not in the transduced cells. Finally, we observed that CB-derived DNRII-transduced NK cells may protect surrounding immune cells by providing a cytokine sink for TGF-ß (decreased TGF-ß levels of 610 ± 265 pg/mL in CB-derived DNRII-transduced NK cells vs. 1817 ± 342 pg/mL in untransduced cells; p = 0.008). CONCLUSIONS: CB NK cells expressing a TGF-ß DNRII may have a functional advantage over unmodified NK cells in the presence of TGF-ß-rich MB, warranting further investigation on its potential applications for patients with medulloblastoma.


Assuntos
Neoplasias Cerebelares/imunologia , Células Matadoras Naturais/imunologia , Meduloblastoma/imunologia , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Sangue Fetal/citologia , Humanos , Células Matadoras Naturais/transplante , Testes de Neutralização , Receptores CCR2/metabolismo , Transplante Homólogo
19.
Cytotherapy ; 21(3): 367-375, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30890307

RESUMO

Translation of cell and gene therapies from pre-clinical experiments to clinical trials and final drug licensing brings requires the development, verification and even validation of the assays essential for the definition of the drug product. The technical and scientific challenges in doing this are far greater than they seem at first and are compounded by a lack of approved standards for assays used to support (c)GMP manufacture. This paper highlights some of those challenges and proposes solutions based on the experience of our colleagues using similar assay platforms in regulated pathology laboratories.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Aprovação de Drogas/métodos , Terapia Genética/métodos , Imunoterapia Adotiva/métodos , Cooperação Internacional , Controle de Qualidade , Bioensaio/normas , Instabilidade Cromossômica/genética , Impressões Digitais de DNA/normas , Citometria de Fluxo/normas , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/terapia , Testes Hematológicos/normas , Teste de Histocompatibilidade/normas , Humanos , Laboratórios/normas , Terminologia como Assunto , Transplante Homólogo
20.
Cytotherapy ; 21(3): 278-288, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30929992

RESUMO

The past year has seen remarkable translation of cellular and gene therapies, with U.S. Food and Drug Administration (FDA) approval of three chimeric antigen receptor (CAR) T-cell products, multiple gene therapy products, and the initiation of countless other pivotal clinical trials. What makes these new drugs most remarkable is their path to commercialization: they have unique requirements compared with traditional pharmaceutical drugs and require different potency assays, critical quality attributes and parameters, pharmacological and toxicological data, and in vivo efficacy testing. What's more, each biologic requires its own unique set of tests and parameters. Here we describe the unique tests associated with ex vivo-expanded tumor-associated antigen T cells (TAA-T). These tests include functional assays to determine potency, specificity, and identity; tests for pathogenic contaminants, such as bacteria and fungus as well as other contaminants such as Mycoplasma and endotoxin; tests for product characterization, tests to evaluate T-cell persistence and product efficacy; and finally, recommendations for critical quality attributes and parameters associated with the expansion of TAA-Ts.


Assuntos
Antígenos CD19/uso terapêutico , Antígenos de Neoplasias/imunologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Aprovação de Drogas/métodos , Linfoma de Células B/terapia , Receptores de Antígenos de Linfócitos T/uso terapêutico , Linfócitos T/imunologia , Células Apresentadoras de Antígenos/imunologia , Antígenos CD19/imunologia , Produtos Biológicos , Técnicas de Cultura de Células , Ensaios Clínicos como Assunto , Endotoxinas/análise , Humanos , Imunoterapia Adotiva , Teste do Limulus , Adesão à Medicação , Mycoplasma , Controle de Qualidade , Receptores de Antígenos de Linfócitos T/imunologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA