Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.371
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(10): 2393-2410.e14, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38653235

RESUMO

SARS-CoV-2 and other sarbecoviruses continue to threaten humanity, highlighting the need to characterize common mechanisms of viral immune evasion for pandemic preparedness. Cytotoxic lymphocytes are vital for antiviral immunity and express NKG2D, an activating receptor conserved among mammals that recognizes infection-induced stress ligands (e.g., MIC-A/B). We found that SARS-CoV-2 evades NKG2D recognition by surface downregulation of MIC-A/B via shedding, observed in human lung tissue and COVID-19 patient serum. Systematic testing of SARS-CoV-2 proteins revealed that ORF6, an accessory protein uniquely conserved among sarbecoviruses, was responsible for MIC-A/B downregulation via shedding. Further investigation demonstrated that natural killer (NK) cells efficiently killed SARS-CoV-2-infected cells and limited viral spread. However, inhibition of MIC-A/B shedding with a monoclonal antibody, 7C6, further enhanced NK-cell activity toward SARS-CoV-2-infected cells. Our findings unveil a strategy employed by SARS-CoV-2 to evade cytotoxic immunity, identify the culprit immunevasin shared among sarbecoviruses, and suggest a potential novel antiviral immunotherapy.


Assuntos
COVID-19 , Evasão da Resposta Imune , Células Matadoras Naturais , Subfamília K de Receptores Semelhantes a Lectina de Células NK , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , COVID-19/imunologia , COVID-19/virologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Animais , Citotoxicidade Imunológica , Regulação para Baixo , Pulmão/imunologia , Pulmão/virologia , Pulmão/patologia
2.
Cell ; 166(1): 77-87, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27345369

RESUMO

HIV-1 broadly neutralizing antibodies (bnAbs) develop in a subset of infected adults and exhibit high levels of somatic hypermutation (SHM) due to years of affinity maturation. There is no precedent for eliciting highly mutated antibodies by vaccination, nor is it practical to wait years for a desired response. Infants develop broad responses early, which may suggest a more direct path to generating bnAbs. Here, we isolated ten neutralizing antibodies (nAbs) contributing to plasma breadth of an infant at ∼1 year post-infection, including one with cross-clade breadth. The nAbs bind to envelope trimer from the transmitted virus, suggesting that this interaction may have initiated development of the infant nAbs. The infant cross-clade bnAb targets the N332 supersite on envelope but, unlike adult bnAbs targeting this site, lacks indels and has low SHM. The identification of this infant bnAb illustrates that HIV-1-specific neutralization breadth can develop without prolonged affinity maturation and extensive SHM.


Assuntos
Anticorpos Neutralizantes/genética , Anticorpos Anti-HIV/genética , Hipermutação Somática de Imunoglobulina , Adulto , Anticorpos Neutralizantes/imunologia , Epitopos , Anticorpos Anti-HIV/sangue , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/sangue , Infecções por HIV/imunologia , Humanos , Lactente , Leucócitos Mononucleares
3.
Immunity ; 54(5): 1002-1021.e10, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33761330

RESUMO

Arthritis typically involves recurrence and progressive worsening at specific predilection sites, but the checkpoints between remission and persistence remain unknown. Here, we defined the molecular and cellular mechanisms of this inflammation-mediated tissue priming. Re-exposure to inflammatory stimuli caused aggravated arthritis in rodent models. Tissue priming developed locally and independently of adaptive immunity. Repeatedly stimulated primed synovial fibroblasts (SFs) exhibited enhanced metabolic activity inducing functional changes with intensified migration, invasiveness and osteoclastogenesis. Meanwhile, human SF from patients with established arthritis displayed a similar primed phenotype. Transcriptomic and epigenomic analyses as well as genetic and pharmacological targeting demonstrated that inflammatory tissue priming relies on intracellular complement C3- and C3a receptor-activation and downstream mammalian target of rapamycin- and hypoxia-inducible factor 1α-mediated metabolic SF invigoration that prevents activation-induced senescence, enhances NLRP3 inflammasome activity, and in consequence sensitizes tissue for inflammation. Our study suggests possibilities for therapeutic intervention abrogating tissue priming without immunosuppression.


Assuntos
Proteínas do Sistema Complemento/imunologia , Fibroblastos/imunologia , Inflamação/imunologia , Membrana Sinovial/imunologia , Imunidade Adaptativa/imunologia , Animais , Artrite Reumatoide/imunologia , Linhagem Celular , Cães , Humanos , Mediadores da Inflamação/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Ratos Wistar , Transdução de Sinais/imunologia
4.
Nature ; 615(7950): 143-150, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36630998

RESUMO

The SARS-CoV-2 Omicron variant is more immune evasive and less virulent than other major viral variants that have so far been recognized1-12. The Omicron spike (S) protein, which has an unusually large number of mutations, is considered to be the main driver of these phenotypes. Here we generated chimeric recombinant SARS-CoV-2 encoding the S gene of Omicron (BA.1 lineage) in the backbone of an ancestral SARS-CoV-2 isolate, and compared this virus with the naturally circulating Omicron variant. The Omicron S-bearing virus robustly escaped vaccine-induced humoral immunity, mainly owing to mutations in the receptor-binding motif; however, unlike naturally occurring Omicron, it efficiently replicated in cell lines and primary-like distal lung cells. Similarly, in K18-hACE2 mice, although virus bearing Omicron S caused less severe disease than the ancestral virus, its virulence was not attenuated to the level of Omicron. Further investigation showed that mutating non-structural protein 6 (nsp6) in addition to the S protein was sufficient to recapitulate the attenuated phenotype of Omicron. This indicates that although the vaccine escape of Omicron is driven by mutations in S, the pathogenicity of Omicron is determined by mutations both in and outside of the S protein.


Assuntos
COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Fatores de Virulência , Virulência , Animais , Camundongos , Linhagem Celular , Evasão da Resposta Imune , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Humanos , Vacinas contra COVID-19/imunologia , Pulmão/citologia , Pulmão/virologia , Replicação Viral , Mutação
5.
Annu Rev Microbiol ; 76: 179-192, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35609949

RESUMO

Bacteria are social organisms that commonly live in dense communities surrounded by a multitude of other species. The competitive and cooperative interactions between these species not only shape the bacterial communities but also influence their susceptibility to antimicrobials. While several studies have shown that mixed-species communities are more tolerant toward antimicrobials than their monospecies counterparts, only limited empirical data are currently available on how interspecies interactions influence resistance development. We here propose a theoretic framework outlining the potential impact of interspecies social behavior on different aspects of resistance development. We identify factors by which interspecies interactions might influence resistance evolution and distinguish between their effect on (a) the emergence of a resistant mutant and (b) the spread of this resistance throughout the population. Our analysis indicates that considering the social life of bacteria is imperative to the rational design of more effective antibiotic treatment strategies with a minimal hazard for resistance development.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Bactérias/genética , Interações Microbianas
6.
Blood ; 142(8): 742-747, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37367252

RESUMO

Among the risk factors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), ABO(H) blood group antigens are among the most recognized predictors of infection. However, the mechanisms by which ABO(H) antigens influence susceptibility to COVID-19 remain incompletely understood. The receptor-binding domain (RBD) of SARS-CoV-2, which facilitates host cell engagement, bears significant similarity to galectins, an ancient family of carbohydrate-binding proteins. Because ABO(H) blood group antigens are carbohydrates, we compared the glycan-binding specificity of SARS-CoV-2 RBD with that of galectins. Similar to the binding profile of several galectins, the RBDs of SARS-CoV-2, including Delta and Omicron variants, exhibited specificity for blood group A. Not only did each RBD recognize blood group A in a glycan array format, but each SARS-CoV-2 virus also displayed a preferential ability to infect blood group A-expressing cells. Preincubation of blood group A cells with a blood group-binding galectin specifically inhibited the blood group A enhancement of SARS-CoV-2 infection, whereas similar incubation with a galectin that does not recognize blood group antigens failed to impact SARS-CoV-2 infection. These results demonstrated that SARS-CoV-2 can engage blood group A, providing a direct link between ABO(H) blood group expression and SARS-CoV-2 infection.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Sistema ABO de Grupos Sanguíneos , Galectinas
7.
Nature ; 566(7744): 344-349, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30700907

RESUMO

Fibroblasts are polymorphic cells with pleiotropic roles in organ morphogenesis, tissue homeostasis and immune responses. In fibrotic diseases, fibroblasts synthesize abundant amounts of extracellular matrix, which induces scarring and organ failure. By contrast, a hallmark feature of fibroblasts in arthritis is degradation of the extracellular matrix because of the release of metalloproteinases and degrading enzymes, and subsequent tissue destruction. The mechanisms that drive these functionally opposing pro-fibrotic and pro-inflammatory phenotypes of fibroblasts remain unknown. Here we identify the transcription factor PU.1 as an essential regulator of the pro-fibrotic gene expression program. The interplay between transcriptional and post-transcriptional mechanisms that normally control the expression of PU.1 expression is perturbed in various fibrotic diseases, resulting in the upregulation of PU.1, induction of fibrosis-associated gene sets and a phenotypic switch in extracellular matrix-producing pro-fibrotic fibroblasts. By contrast, pharmacological and genetic inactivation of PU.1 disrupts the fibrotic network and enables reprogramming of fibrotic fibroblasts into resting fibroblasts, leading to regression of fibrosis in several organs.


Assuntos
Diferenciação Celular/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/genética , Fibrose/patologia , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Animais , Sequência de Bases , Epigênese Genética , Feminino , Humanos , Inflamação/genética , Inflamação/patologia , Masculino , Camundongos , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Transativadores/antagonistas & inibidores
8.
Chem Soc Rev ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365265

RESUMO

Aliphatic amines encompass a diverse group of amines that include alkylamines, alkyl polyamines, alkanolamines and aliphatic heterocyclic amines. Their structural diversity and distinctive characteristics position them as indispensable components across multiple industrial domains, ranging from chemistry and technology to agriculture and medicine. Currently, the industrial production of aliphatic amines is facing pressing sustainability, health and safety issues which all arise due to the strong dependency on fossil feedstock. Interestingly, these issues can be fundamentally resolved by shifting toward biomass as the feedstock. In this regard, cellulose and hemicellulose, the carbohydrate fraction of lignocellulose, emerge as promising feedstock for the production of aliphatic amines as they are available in abundance, safe to use and their aliphatic backbone is susceptible to chemical transformations. Consequently, the academic interest in bio-based aliphatic amines via the catalytic reductive amination of (hemi)cellulose-derived substrates has systematically increased over the past years. From an industrial perspective, however, the production of bio-based aliphatic amines will only be the middle part of a larger, ideally circular, value chain. This value chain additionally includes, as the first part, the refinery of the biomass feedstock to suitable substrates and, as the final part, the implementation of these aliphatic amines in various applications. Each part of the bio-based aliphatic amine value chain will be covered in this Review. Applying a holistic perspective enables one to acknowledge the requirements and limitations of each part and to efficiently spot and potentially bridge knowledge gaps between the different parts.

9.
J Proteome Res ; 23(5): 1547-1558, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38619923

RESUMO

Circadian misalignment due to night work has been associated with an elevated risk for chronic diseases. We investigated the effects of circadian misalignment using shotgun protein profiling of peripheral blood mononuclear cells taken from healthy humans during a constant routine protocol, which was conducted immediately after participants had been subjected to a 3-day simulated night shift schedule or a 3-day simulated day shift schedule. By comparing proteomic profiles between the simulated shift conditions, we identified proteins and pathways that are associated with the effects of circadian misalignment and observed that insulin regulation pathways and inflammation-related proteins displayed markedly different temporal patterns after simulated night shift. Further, by integrating the proteomic profiles with previously assessed metabolomic profiles in a network-based approach, we found key associations between circadian dysregulation of protein-level pathways and metabolites of interest in the context of chronic metabolic diseases. Endogenous circadian rhythms in circulating glucose and insulin differed between the simulated shift conditions. Overall, our results suggest that circadian misalignment is associated with a tug of war between central clock mechanisms controlling insulin secretion and peripheral clock mechanisms regulating insulin sensitivity, which may lead to adverse long-term outcomes such as diabetes and obesity. Our study provides a molecular-level mechanism linking circadian misalignment and adverse long-term health consequences of night work.


Assuntos
Ritmo Circadiano , Inflamação , Insulina , Leucócitos Mononucleares , Humanos , Leucócitos Mononucleares/metabolismo , Insulina/metabolismo , Insulina/sangue , Inflamação/metabolismo , Inflamação/sangue , Masculino , Adulto , Jornada de Trabalho em Turnos , Feminino , Proteômica/métodos , Glicemia/metabolismo , Transdução de Sinais , Resistência à Insulina , Adulto Jovem
10.
Ann Rheum Dis ; 83(4): 409-416, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38123338

RESUMO

The Advances in Targeted Therapies meets annually, convening experts in the field of rheumatology to both provide scientific updates and identify existing scientific gaps within the field. To review the major unmet scientific needs in rheumatology. The 23rd annual Advances in Targeted Therapies meeting convened with more than 100 international basic scientists and clinical researchers in rheumatology, immunology, infectious diseases, epidemiology, molecular biology and other specialties relating to all aspects of immune-mediated inflammatory diseases. We held breakout sessions in five rheumatological disease-specific groups including: rheumatoid arthritis (RA), psoriatic arthritis (PsA), axial spondyloarthritis (axSpa), systemic lupus erythematosus (SLE), systemic sclerosis (SSc) and vasculitis, and osteoarthritis (OA). In each group, experts were asked to identify and prioritise current unmet needs in clinical and translational research. An overarching theme across all disease states is the continued need for clinical trial design innovation with regard to therapeutics, endpoint and disease endotypes. Within RA, unmet needs comprise molecular classification of disease pathogenesis and activity, pre-/early RA strategies, more refined pain profiling and innovative trials designs to deliver on precision medicine. Continued scientific questions within PsA include evaluating the genetic, immunophenotypic, clinical signatures that predict development of PsA in patients with psoriasis, and the evaluation of combination therapies for difficult-to-treat disease. For axSpA, there continues to be the need to understand the role of interleukin-23 (IL-23) in pathogenesis and the genetic relationship of the IL-23-receptor polymorphism with other related systemic inflammatory diseases (eg, inflammatory bowel disease). A major unmet need in the OA field remains the need to develop the ability to reliably phenotype and stratify patients for inclusion in clinical trials. SLE experts identified a number of unmet needs within clinical trial design including the need for allowing endpoints that reflect pharmacodynamic/functional outcomes (eg, inhibition of type I interferon pathway activation; changes in urine biomarkers). Lastly, within SSc and vasculitis, there is a lack of biomarkers that predict response or disease progression, and that allow patients to be stratified for therapies. There remains a strong need to innovate clinical trial design, to identify systemic and tissue-level biomarkers that predict progression or response to therapy, endotype disease, and to continue developing therapies and therapeutic strategies for those with treatment-refractory disease. This document, based on expert consensus, should provide a roadmap for prioritising scientific endeavour in the field of rheumatology.


Assuntos
Artrite Psoriásica , Artrite Reumatoide , Espondiloartrite Axial , Lúpus Eritematoso Sistêmico , Osteoartrite , Reumatologia , Vasculite , Humanos , Artrite Psoriásica/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Lúpus Eritematoso Sistêmico/terapia , Biomarcadores , Interleucina-23
11.
J Autoimmun ; 144: 103185, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38428109

RESUMO

BACKGROUND: The significance of muscle biopsy as a diagnostic tool in idiopathic inflammatory myopathies (IIM) remains elusive. We aimed to determine the diagnostic weight that has been given to muscle biopsy in patients with suspected IIM, particularly in terms of clinical diagnosis and therapeutic decisions. MATERIAL AND METHODS: In this retrospective multicentric study, we analyzed muscle biopsy results of adult patients with suspected IIM referred to a tertiary center between January 1, 2007, and October 31, 2021. Information regarding referral department, suspected diagnosis, biopsy site, demographic, clinical, laboratory data, and imaging results were extracted. Statistical analyses included the level of agreement between suspected and histological diagnosis and calculation of diagnostic performance (positive and negative predictive values, positive and negative likelihood ratios, sensitivity, and specificity of muscle biopsy in relation to clinical diagnosis and/or treatment initiation). Performance was tested in different strata based on clinical pre-test probability. RESULTS: Among 758 muscle biopsies, IIM was histologically compatible in 357/758 (47.1%) cases. Proportion of IIM was higher if there was a solid clinical pre-test probability (64.3% vs. 42.4% vs. 48% for high, medium and low pre-test probability). Sensitivity and specificity of muscle biopsy were highest (82%) when the diagnosis by the clinician was used as outcome scenario. Negative predictive value was only moderate (between 63% and 80%) and lowest if autoantibodies were positive (35%). CONCLUSION: In patients with clinically suspected IIM, approximately 50% of biopsies revealed features indicative of IIM. Diagnostic performance of muscle biopsy was moderate to high depending on clinical pre-test probability.


Assuntos
Miosite , Adulto , Humanos , Estudos Retrospectivos , Miosite/diagnóstico , Miosite/patologia , Biópsia , Tomada de Decisão Clínica , Autoanticorpos , Músculos
12.
Crit Rev Microbiol ; : 1-10, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158370

RESUMO

The rapid increase of antibiotic-resistant pathogens is severely limiting our current treatment possibilities. An important subset of the resistance mechanisms conferring antibiotic resistance have public effects, allowing otherwise susceptible bacteria to also survive antibiotic treatment. As susceptible bacteria can survive treatment without bearing the metabolic cost of producing the resistance mechanism, there is potential to increase their relative frequency in the population and, as such, select against resistant bacteria. Multiple studies showed that this altered selection for resistance is dependent on various environmental and treatment parameters. In this review, we provide a comprehensive overview of their most important findings and describe the main factors impacting the selection for resistance. In-depth understanding of the driving forces behind selection can aid in the design and implementation of alternative treatments which limit the risk of resistance development.

13.
Osteoporos Int ; 35(9): 1487-1496, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38960982

RESUMO

Task Force on 'Clinical Algorithms for Fracture Risk' commissioned by the American Society for Bone and Mineral Research (ASBMR) Professional Practice Committee has recommended that FRAX® models in the US do not include adjustment for race and ethnicity. This position paper finds that an agnostic model would unfairly discriminate against the Black, Asian and Hispanic communities and recommends the retention of ethnic and race-specific FRAX models for the US, preferably with updated data on fracture and death hazards. In contrast, the use of intervention thresholds based on a fixed bone mineral density unfairly discriminates against the Black, Asian and Hispanic communities in the US. This position of the Working Group on Epidemiology and Quality of Life of the International Osteoporosis Foundation (IOF) is endorsed both by the IOF and the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO).


Assuntos
Algoritmos , Densidade Óssea , Medicina Baseada em Evidências , Fraturas por Osteoporose , Humanos , Fraturas por Osteoporose/prevenção & controle , Fraturas por Osteoporose/etnologia , Medição de Risco/métodos , Densidade Óssea/fisiologia , Osteoporose/etnologia , Estados Unidos/epidemiologia , Feminino
14.
J Neurol Neurosurg Psychiatry ; 95(8): 737-747, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38388486

RESUMO

BACKGROUND: Validation of the 2020 consensus criteria for primary lateral sclerosis (PLS) is essential for their use in clinical practice and future trials. METHODS: In a large cohort of patients diagnosed with PLS by expert opinion prior to the new criteria with detailed clinical baseline evaluation (n=107) and longitudinal follow-up (n=63), we applied the new diagnostic criteria and analysed the clinical phenotype, electromyography (EMG), diagnostic accuracy and prognosis, adding neurofilaments and MRI as potential biomarkers. RESULTS: The criteria for definite PLS were met by 28% and those for probable PLS by 19%, whereas 53% did not meet the full criteria at baseline, mainly due to the time, EMG and region criteria. Patients not meeting the criteria had less generalised upper motor neuron involvement but were otherwise similar in demographic and clinical characteristics. All patients with definite and probable PLS maintained PLS diagnosis during follow-up, while four patients not meeting the criteria developed clinical lower motor neuron involvement. Definite PLS cases showed improved survival compared with probable PLS and patients who did not meet the criteria. Despite a clinical PLS phenotype, fibrillation potentials/positive sharp waves and fasciculations in one or more muscles were a frequent EMG finding, with the extent and prognostic significance depending on disease duration. Serum neurofilament light and a multiparametric MRI fibre integrity Z-score correlated with clinical parameters and were identified as potential biomarkers. CONCLUSION: Validation of the 2020 PLS consensus criteria revealed high diagnostic certainty and prognostic significance, supporting their value for research and clinical practice.


Assuntos
Consenso , Eletromiografia , Imageamento por Ressonância Magnética , Doença dos Neurônios Motores , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/diagnóstico , Estudos de Coortes , Adulto , Idoso , Proteínas de Neurofilamentos/sangue , Biomarcadores/sangue , Prognóstico
15.
J Theor Biol ; 590: 111851, 2024 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-38782198

RESUMO

Biomathematical models of fatigue capture the physiology of sleep/wake regulation and circadian rhythmicity to predict changes in neurobehavioral functioning over time. We used a biomathematical model of fatigue linked to the adenosinergic neuromodulator/receptor system in the brain as a framework to predict sleep inertia, that is, the transient neurobehavioral impairment experienced immediately after awakening. Based on evidence of an adenosinergic basis for sleep inertia, we expanded the biomathematical model with novel differential equations to predict the propensity for sleep inertia during sleep and its manifestation after awakening. Using datasets from large laboratory studies of sleep loss and circadian misalignment, we calibrated the model by fitting just two new parameters and then validated the model's predictions against independent data. The expanded model was found to predict the magnitude and time course of sleep inertia with generally high accuracy. Analysis of the model's dynamics revealed a bifurcation in the predicted manifestation of sleep inertia in sustained sleep restriction paradigms, which reflects the observed escalation of the magnitude of sleep inertia in scenarios with sleep restriction to less than âˆ¼ 4 h per day. Another emergent property of the model involves a rapid increase in the predicted propensity for sleep inertia in the early part of sleep followed by a gradual decline in the later part of the sleep period, which matches what would be expected based on the adenosinergic regulation of non-rapid eye movement (NREM) sleep and its known influence on sleep inertia. These dynamic behaviors provide confidence in the validity of our approach and underscore the predictive potential of the model. The expanded model provides a useful tool for predicting sleep inertia and managing impairment in 24/7 settings where people may need to perform critical tasks immediately after awakening, such as on-demand operations in safety and security, emergency response, and health care.


Assuntos
Fadiga , Modelos Biológicos , Sono , Humanos , Fadiga/fisiopatologia , Sono/fisiologia , Vigília/fisiologia , Ritmo Circadiano/fisiologia , Privação do Sono/fisiopatologia
16.
Annu Rev Psychol ; 74: 113-135, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36378917

RESUMO

Objects are the core meaningful elements in our visual environment. Classic theories of object vision focus upon object recognition and are elegant and simple. Some of their proposals still stand, yet the simplicity is gone. Recent evolutions in behavioral paradigms, neuroscientific methods, and computational modeling have allowed vision scientists to uncover the complexity of the multidimensional representational space that underlies object vision. We review these findings and propose that the key to understanding this complexity is to relate object vision to the full repertoire of behavioral goals that underlie human behavior, running far beyond object recognition. There might be no such thing as core object recognition, and if it exists, then its importance is more limited than traditionally thought.


Assuntos
Redes Neurais de Computação , Reconhecimento Visual de Modelos , Humanos , Percepção Visual , Visão Ocular , Evolução Biológica
17.
Int Urogynecol J ; 35(9): 1839-1849, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096389

RESUMO

INTRODUCTION AND HYPOTHESIS: The objective was to evaluate the safety and effectiveness of an intrapartum electromechanical pelvic floor dilator designed to reduce the risk of levator ani muscle (LAM) avulsion during vaginal delivery. METHODS: A multicenter, randomized controlled trial enrolled nulliparous participants planning vaginal delivery. During the first stage of labor, participants were randomized to receive the intravaginal device or standard-of-care labor management. The primary effectiveness endpoint was the presence of full LAM avulsion on transperineal pelvic-floor ultrasound at 3 months. Three urogynecologists performed blinded interpretation of ultrasound images. The primary safety endpoint was adverse events (AEs) through 3 months. RESULTS: A total of 214 women were randomized to Device (n = 113) or Control (n = 101) arms. Of 113 Device assignees, 82 had a device placed, of whom 68 delivered vaginally. Of 101 Control participants, 85 delivered vaginally. At 3 months, 110 participants, 46 Device subjects who received full device treatment, and 64 Controls underwent ultrasound for the per-protocol analysis. No full LAM avulsions (0.0%) occurred in the Device group versus 7 out of 64 (10.9%) in the Control group (p = 0.040; two-tailed Fisher's test). A single maternal serious AE (laceration) was device related; no neonate serious AEs were device related. CONCLUSIONS: The pelvic floor dilator device significantly reduced the incidence of complete LAM avulsion in nulliparous individuals undergoing first vaginal childbirth. The dilator demonstrated an acceptable safety profile and was well received by recipients. Use of the intrapartum electromechanical pelvic floor dilator in laboring nulliparous individuals may reduce the rate of LAM avulsion, an injury associated with serious sequelae including pelvic organ prolapse.


Assuntos
Parto Obstétrico , Diafragma da Pelve , Humanos , Feminino , Adulto , Gravidez , Projetos Piloto , Diafragma da Pelve/lesões , Parto Obstétrico/efeitos adversos , Parto Obstétrico/instrumentação , Dilatação/instrumentação , Dilatação/efeitos adversos , Dilatação/métodos , Complicações do Trabalho de Parto/prevenção & controle , Complicações do Trabalho de Parto/etiologia , Ultrassonografia , Paridade , Adulto Jovem
18.
J Infect Dis ; 227(7): 850-854, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35767286

RESUMO

BACKGROUND: We examined the relationship between placental histopathology and transplacental antibody transfer in pregnant patients after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: Differences in plasma concentrations of anti-receptor biding domain (RBD) immunoglobulin (Ig)G antibodies in maternal and cord blood were analyzed according to presence of placental injury. RESULTS: Median anti-RBD IgG concentrations in cord blood with placental injury (n = 7) did not differ significantly from those without injury (n = 16) (median 2.7 [interquartile range {IQR}, 1.8-3.6] vs 2.7 [IQR, 2.4-2.9], P = 0.59). However, they were associated with lower transfer ratios (median 0.77 [IQR, 0.61-0.97] vs 0.97 [IQR, 0.80-1.01], P = 0.05). CONCLUSIONS: SARS-CoV-2 placental injury may mediate reduced maternal-fetal antibody transfer.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Humanos , Gravidez , Feminino , Placenta , SARS-CoV-2 , Anticorpos , Anticorpos Antivirais
19.
Mol Biol Evol ; 39(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36480297

RESUMO

Antibiotic cycling has been proposed as a promising approach to slow down resistance evolution against currently employed antibiotics. It remains unclear, however, to which extent the decreased resistance evolution is the result of collateral sensitivity, an evolutionary trade-off where resistance to one antibiotic enhances the sensitivity to the second, or due to additional effects of the evolved genetic background, in which mutations accumulated during treatment with a first antibiotic alter the emergence and spread of resistance against a second antibiotic via other mechanisms. Also, the influence of antibiotic exposure patterns on the outcome of drug cycling is unknown. Here, we systematically assessed the effects of the evolved genetic background by focusing on the first switch between two antibiotics against Salmonella Typhimurium, with cefotaxime fixed as the first and a broad variety of other drugs as the second antibiotic. By normalizing the antibiotic concentrations to eliminate the effects of collateral sensitivity, we demonstrated a clear contribution of the evolved genetic background beyond collateral sensitivity, which either enhanced or reduced the adaptive potential depending on the specific drug combination. We further demonstrated that the gradient strength with which cefotaxime was applied affected both cefotaxime resistance evolution and adaptation to second antibiotics, an effect that was associated with higher levels of clonal interference and reduced cost of resistance in populations evolved under weaker cefotaxime gradients. Overall, our work highlights that drug cycling can affect resistance evolution independently of collateral sensitivity, in a manner that is contingent on the antibiotic exposure pattern.


Assuntos
Antibacterianos , Sensibilidade Colateral a Medicamentos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , Cefotaxima/farmacologia , Farmacorresistência Bacteriana/genética
20.
Br J Haematol ; 202(5): 937-941, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37287128

RESUMO

Patients with sickle cell disease (SCD) are considered to be immunocompromised, yet data on the antibody response to SARS-CoV-2 vaccination in SCD is limited. We investigated anti-SARS-CoV-2 IgG titres and overall neutralizing activity in 201 adults with SCD and demographically matched non-SCD controls. Unexpectedly, patients with SCD generate a more robust and durable COVID-19 vaccine IgG response compared to matched controls, though the neutralizing activity remained similar across both cohorts. These findings suggest that patients with SCD achieve a similar antibody response following COVID-19 vaccination compared to the general population, with implications for optimal vaccination strategies for patients with SCD.


Assuntos
Anemia Falciforme , COVID-19 , Adulto , Humanos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Imunoglobulina G , Anemia Falciforme/complicações , Anemia Falciforme/terapia , Anticorpos Antivirais , Imunidade , Anticorpos Neutralizantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA