Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Toxicol Mech Methods ; 34(5): 596-605, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38375806

RESUMO

Target lipid model (TLM) and toxic unit (TU) approaches were applied to ecotoxicity and chemistry data from low-energy WAFs (LE-WAFs) of source and weathered crude oils originating from the Deepwater Horizon oil spill. The weathered oils included artificially weathered oils and naturally weathered samples collected in the Gulf of Mexico after the spill. Oil weathering greatly reduced the concentrations of identified LE-WAF components, however, the mass of uncharacterized polar material (UPC) in the LE-WAFs remained largely unchanged during the weathering process. While the TLM-derived calculations displayed a significant decrease in toxicity (TUs) for the heavily weathered oils, copepod toxicity, expressed as LC10-based TUs, were comparable between LE-WAFs of fresh and weathered oils. The discrepancy between observed and predicted toxicity for the LE-WAFs of artificially weathered oils may be related to limitations by the chemical analyses or increased toxicity due to generation of new unknown compounds during the weathering process.


Assuntos
Copépodes , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Poluição por Petróleo/análise , Petróleo/toxicidade , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Copépodes/efeitos dos fármacos , Golfo do México , Tempo (Meteorologia) , Dose Letal Mediana
2.
Toxicol Mech Methods ; : 1-13, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38572598

RESUMO

Toxicology studies in early fish life stages serve an important function in measuring the impact of potentially harmful substances, such as crude oil, on marine life. Morphometric analysis of larvae can reveal the effects of such substances in retarding growth and development. These studies are labor intensive and time consuming, typically resulting in only a small number of samples being considered. An automated system for imaging and measurement of experimental animals, using flow-through imaging and an artificial neural network to allow faster sampling of more individuals, has been described previously and used in toxicity experiments. This study compares the performance of the automated imaging and analysis system with traditional microscopy techniques in measuring biologically relevant endpoints using two oil treatments as positive controls. We demonstrate that while the automated system typically underestimates morphometric measurements relative to analysis of manual microscopy images, it shows similar statistical results to the manual method when comparing treatments across most endpoints. It allows for many more individual specimens to be sampled in a shorter time period, reducing labor requirements and improving statistical power in such studies, and is noninvasive allowing for repeated sampling of the same population.

3.
Toxicol Mech Methods ; 34(3): 245-255, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38375852

RESUMO

Crude oil spilled at sea is chemically altered through environmental processes such as dissolution, biodegradation, and photodegradation. Transformation of hydrocarbons to oxygenated species increases water-solubility. Metabolites and oxidation products largely remain uncharacterized by common analytical methods but may be more bioavailable to aquatic organisms. Studies have shown that unresolved (i.e. unidentified) polar compounds ('UPCs') may constitute > 90% of the water-accommodated fraction (WAF) of heavily weathered crude oils, but still there is a paucity of information characterizing their toxicological significance in relation to other oil-derived toxicants. In this study, low-energy WAFs (no droplets) were generated from two field-weathered oils (collected during the 2010 Deepwater Horizon incident) and their polar fractions were isolated through fractionation. To allow establishment of thresholds for acute toxicity (LC50) of the dissolved and polar fraction of field collected oils, we concentrated both WAFs and polar fractions to beyond field-documented concentrations, and the acute toxicity of both to the marine copepod Acartia tonsa was measured and compared to the toxicity of the native WAF (non-concentrated). The difference in toxic units (TUs) between the total of the mixture and of identified compounds of known toxicity (polycyclic aromatic hydrocarbons [PAHs] and alkyl phenols) in both WAF and polar fractions was used to estimate the contribution of the UPC to overall toxicity. This approach identified that UPC had a similar contribution to toxicity as identified compounds within the WAFs of the field-weathered oils. This signifies the relative importance of polar compounds when assessing environmental impacts of spilled and weathered oil.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Poluição por Petróleo/análise , Poluentes Químicos da Água/toxicidade , Óleos , Petróleo/toxicidade , Petróleo/análise , Água , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
4.
Environ Sci Technol ; 57(20): 7666-7674, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37170530

RESUMO

Intentional discharges of produced water from oil production platforms to the marine environment contain a complex mixture of toxicants, including polycyclic aromatic hydrocarbons (PAHs). Early life stages of fish are highly sensitive to petrogenic exposure, and short-term exposure during critical periods of embryonic development may have detrimental effects on larvae health and survival. However, why different periods are more sensitive to exposure than others are not fully understood. Three identical exposure experiments (48 h, approx. 30 µg/L tPAH, sum 42 PAHs) on lumpfish (Cyclopterus lumpus) embryos were conducted where only exposure timing was varied: 0-48 h post fertilization (hpf, starting before chorion hardening), 36-84 hpf (starting after chorion hardening), and 240-288 hpf (during organogenesis). Total PAH (tPAH) uptake at the end of exposure was 5× higher when exposed during fertilization than when exposed late (during organogenesis). The first evidence of cyp1a induction in lumpfish during embryogenesis was observed after 84 hpf. Early exposure affected lipid droplet coagulation, indicating altered lipid utilization during embryogenesis. Although no significant impacts of exposure were observed on hatching success, hatching was delayed when exposed at the latest time point. This study shows that chorion properties, lipid content, biotransformation potential, and timing of produced water exposure during lumpfish embryogenesis affected PAH uptake and elimination.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Água , Biotransformação , Lipídeos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Embrião não Mamífero/metabolismo
5.
J Toxicol Environ Health A ; : 1-18, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870159

RESUMO

Accidental crude oil spills to the marine environment cause dispersion of oil into the water column through the actions of breaking waves, a process that can be facilitated using chemical dispersants. Oil dispersions contain dispersed micron-sized oil droplets and dissolved oil components, and the toxicity of oil dispersions has been assumed to be associated primarily with the latter. However, most hydrophobic, bioaccumulative and toxic crude oil components are retained within the droplets which may interact with marine filter-feeders. We here summarize the findings of 15 years of research using a unique methodology to generate controlled concentrations and droplet size distributions of dispersed crude oil to study effects on the filter-feeding cold-water copepod Calanus finmarchicus. We focus primarily on the contribution of chemical dispersants and micron-sized oil droplets to uptake and toxicity of oil compounds. Oil dispersion exposures cause PAH uptake and oil droplet accumulation on copepod body surfaces and inside their gastrointestinal tract, and exposures to high exposure (mg/L range) reduce feeding activity, causes reproductive impairments and mortality. These effects were slightly higher in the presence of chemical dispersants, possibly due to higher filtration of chemically dispersed droplets. For C. finmarchicus, dispersions containing oil droplets caused more severe toxic effects than filtered dispersions, thus, oil droplets contribute to the observed toxicity. The methodology for generating crude oil dispersion is a valuable tool to isolate impacts of crude oil microdroplets and can facilitate future research on oil dispersion toxicity and produce data to improve oil spill models.

6.
J Toxicol Environ Health A ; 86(12): 397-403, 2023 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-37162368

RESUMO

Plastics- and rubber-derived chemicals are given increasing focus due to their migration into the environment and potential for causing detrimental effects. The current study demonstrates the use of a novel biomonitoring platform using caged fertilized eggs of lumpfish (Cyclopterus lumpus) in combination with gas chromatography tandem mass spectrometry analysis of a selection of target chemicals extracted from the lumpfish eggs after deployment. A monitoring campaign in the Trondheim harbor and off the coast of Trøndelag in Norway was executed using the described system. Here we found accumulation of UV stabilizers (benzophenone and benzothiazoles), plasticizers (n-butylbenzenesulfonamide), reagents, and polymer synthesis precursors (bisphenol A, acetophenone, phthalide, and phthalimide) in deployed eggs. Several of the compounds were detected in concentrations above previously quantified legacy contaminants in the same study areas.


Assuntos
Doenças dos Peixes , Perciformes , Animais , Borracha , Plásticos , Monitoramento Biológico , Noruega
7.
J Toxicol Environ Health A ; : 1-9, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902244

RESUMO

The demand for mineral resources is increasing mining activities worldwide. In Norway, marine tailing disposal (MTD) is practiced, introducing mineral particles into fjord ecosystems. We investigated the effects of two concentrations (high and low) of fine tailings from a CaCO3 processing plant on early life stages of the marine copepod Calanus finmarchicus. Results show that the exposure did not significantly impact hatching success or development in non- and early feeding life stages. However, feeding stage nauplii ingested tailings, which caused a significantly slower development in later nauplii stages in high exposure groups, with most individuals being two stages behind the control group. Further, high mortality occurred in late nauplii and early copepodite stages in low exposure groups, which could be caused by insufficient energy accumulation and depleted energy reserves during development. Individuals exposed to high exposure concentrations seemed to survive by arresting development and potentially by reduced activity, thereby conserving energy reserves. In nature, slower development could affect lipid storage buildup and reproduction.

8.
J Toxicol Environ Health A ; : 1-24, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395093

RESUMO

Fish early life stages are well known for their sensitivity to crude oil exposure. However, the effect of crude oil exposure on adults and their gametes during their spawning period is not well studied. Polar cod, a key arctic fish, may be at risk for crude oil exposure during this potentially sensitive life stage. Additionally, this species experiences lower food availability during their spawning season, with unknown combined consequences. In the present study, wild-caught polar cod were exposed to decreasing levels of a water-soluble fraction (WSF) of crude oil or control conditions and fed either at a low or high feed ration to assess the combined effect of both stressors. Samples were taken during late gonadal development, during active spawning (spawning window), and in the post-spawning period. Histology analysis of gonads from fish sampled during the spawning window showed that oil-exposed polar cod were more likely to have spawned compared to controls. Oil-exposed females had 947 differentially regulated hepatic genes, and their eggs had a higher polycyclic aromatic hydrocarbon body burden compared to controls. Feed ration did not consistently affect polar cod's response to oil exposure for the endpoints measured, however, did alone result in decreases in some sperm motility parameters. These results suggest that polar cod's spawning period is a sensitive life event to crude oil exposure, while feed limitation may play a minor role for this supposedly capital breeder. The effects of adult exposure to crude oil on gamete quality and the next generation warrant further investigation.

9.
Ecotoxicol Environ Saf ; 229: 113100, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34923326

RESUMO

During sub-sea oil spills to the marine environment, oil droplets will rise towards the sea surface at a rate determined by their density and diameter as well as the vertical turbulence in the water. Micro-droplets (< 50 µm) are expected to have prolonged residence times in the water column. If present, pelagic fish eggs may thus be exposed to dispersed oil from subsurface oil spills for days, and the contribution of these micro-droplets to toxicity is not well known. The purpose of this work was to investigate to what extent timing of exposure and the presence of oil micro droplets affects PAH uptake and survival of pelagic Atlantic cod eggs. A single batch of eggs was separated in two groups and exposed to dispersions and corresponding water-soluble fraction at 3-7 days (Early exposure) and 9-13 days (Late exposure) post fertilization. Partitioning of PAHs between crude oil microdroplets, water and eggs was estimated as well as the contribution of oil droplets to PAH body residue and acute and delayed mortality. Timing of oil exposure clearly affects both the mortality rate and the timing of mortality. Even though the body residue of PAHs were lower when embryos were exposed in the later embryonic stage, mortality rate increased relative to the early exposure indicating that critical body residue threshold is stage specific. Although our results suggest that the dissolved fraction is the dominating driver for toxicity in cod embryos exposed to oil dispersions, crude oil micro droplets contribute to increased mortality as well.


Assuntos
Gadus morhua , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Petróleo/análise , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade
10.
Ecotoxicol Environ Saf ; 245: 114074, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36137423

RESUMO

Fish embryos can bioaccumulate and are particularly sensitive to a wide range of contaminants, which makes them suitable sentinels for environmental biomonitoring. However, fish embryos are very rarely utilized in environmental monitoring surveys, possibly due to their fragility and seasonality. In the present work, we assessed the applicability of caged lumpfish (Cyclopterus lumpus) eggs for in situ biomonitoring of exposure and effects of organic contaminants focusing on polyaromatic hydrocarbons and phenolic compounds. Fertilized eggs (1 dpf) were transplanted for 17-19 days at different locations that differed in terms of contaminant load, depths and weather conditions, namely at three stations close to the city of Trondheim (two harbour areas and a one in the Fjord) and three stations at a coastal aquaculture facility. High survival upon retrieval after deployment showed that lumpfish eggs are relatively robust and survive encaging in different environments. Bioaccumulation of organic contaminants (PAHs and phenolic compounds) was measured and potential effects on hatching, development, survival and larvae morphometry were determined. Chemical analyses showed that especially PAHs were effectively accumulated in eggs in contaminated sites, with concentrations of Æ©PAHs being 15 - 25 times higher in harbour areas compared to those at the aquaculture facility. A higher incidence of embryonic deformations was observed in the most polluted deployment location, but larvae morphometry revealed no evidence of toxicity related to pollutant body burden. In conclusion, the in-situ exposure method was proven to work well, making it attractive for implementations in environmental monitoring programs.


Assuntos
Poluentes Ambientais , Doenças dos Peixes , Perciformes , Animais , Bioacumulação , Peixes , Hidrocarbonetos , Oceanos e Mares , Qualidade da Água , Óvulo
11.
Environ Res ; 200: 111447, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34102163

RESUMO

Mining and processing of minerals produce large quantities of tailings as waste. Some countries, including Norway, allow disposal of mine tailings in the sea. In this study we investigated the impacts of tailings from a calcium carbonate (CaCO3) processing plant on early live stages of haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua). Fish eggs (3 days post fertilisation; dpf) were exposed for 48 h to three concentrations of tailings, nominally 1 mg L-1 (low, L); 10 mg L-1 (medium, M) and 100 mg L-1 (high, H); with L and M representing concentrations occurring at tailing release points. Results show that tailings rapidly adhered to eggs of both species, causing negative buoyancy (sinking of eggs) in M and H exposures. While tailings remained on egg surfaces in both species also after exposure termination, adhesion seemed more pronounced in cod, leading to larger impacts on buoyancy even after exposure. Tailing exposure further induced early hatching and significantly reduced survival in M and H exposed embryos in both fish species, and in cod from the L exposure group. Moreover, tailing exposure caused reduced survival and malformations in larvae, potentially related to premature hatching. This study shows that mineral particles adhere to haddock and cod eggs, affecting egg buoyancy, survival and development.


Assuntos
Gadiformes , Gadus morhua , Animais , Peixes , Larva , Alimentos Marinhos/análise
12.
Rapid Commun Mass Spectrom ; 34(24): e8950, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-32945058

RESUMO

RATIONALE: Produced water (PW) discharge from the oil and gas industry represents the largest intentional marine waste volume. Alkyl phenols (APs) are one of the main toxic component groups found in PW, with concentration of APs in discharged PW from the Norwegian Sector of the North Sea up to >16 mg/L. Several species of fish spawn in direct proximity to offshore production platforms and may be at risk of AP exposure. Therefore, a sensitive method to determine the potential for bioaccumulation of APs in fish eggs is needed. METHODS: Fish eggs were extracted using liquid-solid extraction followed by gel permeation chromatography cleanup. Analysis was performed by gas chromatography coupled to triple quadrupole mass spectrometry. Extraction and analytical conditions were optimized for analysis of phenol and 30 APs (C1 -C9 ) with different degrees of branching in the alkyl chain. The method was verified and applied to analyze the body residue of APs in PW-exposed marine fish (Atlantic cod, Gadus morhua) eggs. RESULTS: A comprehensive and sensitive method for the determination of C0 -C9 APs was developed. Detection limits were in the range 0.03-8 ng. Apart from a few compounds with poor recovery, the method generally provided reliable results with good precision (<15%). CONCLUSIONS: We demonstrate the successful application of an optimized extraction method for APs in fish eggs and show first results of AP accumulation in cod embryos exposed to PW in the laboratory.


Assuntos
Peixes/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Óvulo/química , Fenóis/análise , Poluentes Químicos da Água/análise , Animais , Exposição Ambiental/análise , Testes de Toxicidade
13.
Environ Sci Technol ; 52(7): 4358-4366, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29514001

RESUMO

Microbial degradation following oil spills results in metabolites from the original oil. Metabolites are expected to display lower bioaccumulation potential and acute toxicity to marine organisms due to microbial-facilitated incorporation of chemical functional groups and a general decrease in lipophilicity. The toxicity and characterization of metabolites are poorly studied. The purpose of the present work was to evaluate the toxicity of degraded (0-21 days) water-soluble oil components. Low-energy water accommodated fraction (LE-WAF) of a weathered crude oil was prepared with nutrient amended seawater at 5 °C, kept in the dark, and sampled at 0, 10, 14, and 21 days. Samples were extracted with dichloromethane and toxicity experiments were conducted with reconstituted extracts. Toxicity experiments were conducted for 4 days on developing cod ( Gadus morhua) embryos during a critical period of their heart development. After exposure, embryos were kept in clean seawater and observed until 5 days post hatch. Survival, hatching, morphometric aberrations, and cardiac function was studied. The expected decrease in sublethal toxicity during the biodegradation period was not found, indicating that metabolites formed during biodegradation likely contributed to larvae toxicity.


Assuntos
Petróleo , Poluentes Químicos da Água , Animais , Biodegradação Ambiental , Peixes , Água
14.
Environ Sci Technol ; 52(24): 14436-14444, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30481011

RESUMO

The impact of oil microdroplets on the partitioning of polycyclic aromatic hydrocarbons (PAHs) between water and marine zooplankton was evaluated. The experimental approach allowed direct comparison of crude oil dispersions (containing both micro-oil droplets and water-soluble fraction; WSF) with the corresponding WSF (without oil droplets). Dispersion concentration and oil type have an impact on the PAH composition of WSFs and therefore affect dispersion bioavailability. Higher T-PAH body residues were observed in copepods treated with dispersions compared to the corresponding WSFs. PAHs with log Kow 3-4.5 displayed comparable accumulation factors between treatments; however, accumulation factors for less soluble PAHs (log Kow = 4.5-6) were higher for the WSF than for the dispersions, suggesting low bioavailability for components contained in oil droplets. The higher PAH body residue in dispersion exposures is assumed to result mainly from copepods grazing on oil droplets, which offers an alternative uptake route to passive diffusion. To a large degree this route is controlled by the filtration rates of the copepods, which may be inversely related to droplet concentration.


Assuntos
Copépodes , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Biomassa , Água do Mar , Água
15.
Environ Sci Technol ; 52(17): 9899-9907, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-29897747

RESUMO

The risk of accidental oil spills in the Arctic is on the rise due to increased shipping and oil exploration activities, making it essential to calibrate parameters for risk assessment of oil spills to Arctic conditions. The toxicokinetics of crude oil components were assessed by exposing one lipid-poor (CIII) and one lipid-rich (CV) stage of the Arctic copepod Calanus hyperboreus to crude oil WSF (water-soluble fraction). Water concentrations and total body residues (BR), as well as lipid volume fractions, were measured at regular intervals during exposure and recovery. Bioconcentration factors (BCFs) and elimination rates ( ke) for 26 petrogenic oil components were estimated from one-compartment models fitted to the BR data. Our parameters were compared to estimations made by the OMEGA bioaccumulation model, which uses the octanol-water partitioning coefficient ( KOW) in QSAR (quantitative structure-activity relationship) predictions. Our parameters for the lipid-poor CIIIs generally agreed with the OMEGA predictions, while neither the BCFs nor the kes for the lipid-rich CVs fitted within the realistic range of the OMEGA parameters. Both the uptake and elimination rates for the CVs were in general half an order of magnitude lower than the OMEGA predictions, showing an overestimation of these parameters by the OMEGA model.


Assuntos
Copépodes , Petróleo , Poluentes Químicos da Água , Animais , Regiões Árticas , Toxicocinética
16.
Environ Sci Technol ; 51(13): 7707-7713, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28598612

RESUMO

Efficiently assessing and managing the risks of pollution in the marine environment requires mechanistic models for toxic effects. The General Unified Threshold model for Survival (GUTS) provides a framework for deriving toxicokinetic-toxicodynamic (TKTD) models for the end point survival. Two recurring questions in the application of GUTS concern the most appropriate death mechanism, and whether the total body residue is a proper dose metric for toxic effects. We address these questions with a case study for dimethylnaphthalene in the marine copepod Calanus finmarchicus. A detailed analysis revealed that body residues were best explained by representing copepods with two toxicokinetic compartments: separating structural biomass and lipid storage. Toxicity is most likely related to the concentration in structure, which led to identification of "stochastic death" as the most appropriate death mechanism. Interestingly, the parametrized model predicts that lipid content will have only minor influence on short-term toxicity. However, the toxicants stored in lipids may have more substantial impacts in situations not included in our experiments (e.g., during diapause and gonad maturation), and for contaminant transfer to eggs and copepod predators.


Assuntos
Copépodes , Metabolismo dos Lipídeos/efeitos dos fármacos , Naftalenos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Transporte Biológico , Lipídeos , Metamorfose Biológica , Toxicocinética
17.
J Toxicol Environ Health A ; 80(16-18): 932-940, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28850016

RESUMO

Toxic effects of organic hydrophobic contaminants include impacts on fish heart rate (HR) and cardiac functioning. Thus, in ecotoxicology as well as aquaculture and even medicine, fish heart functioning plays an important role in application areas. The aim of this study was to assemble a pipeline of image processing and statistical techniques to extract HR information from microscopy videos of the embryo and larval stages of three species of fish (Atlantic cod, haddock, and Atlantic bluefin tuna). The method enables automatic processing for a large number of individuals, saving a significant amount of time compared with manual processing, while simultaneously eliminating the type of errors such a manual process might incur.


Assuntos
Peixes/classificação , Frequência Cardíaca , Microscopia de Vídeo , Animais , Peixes/embriologia , Gadiformes/embriologia , Gadus morhua/embriologia , Coração/fisiologia , Larva/fisiologia , Modelos Teóricos
18.
J Toxicol Environ Health A ; 80(16-18): 820-829, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28777041

RESUMO

Use of hydrogen peroxide (H2O2) for removal of salmon lice in the aquaculture industry has created concern that non-target organisms might be affected during treatment scenarios. The aim of the present study was to examine the potential for H2O2 to produce oxidative stress and reduce survival in one of the most abundant zooplankton species in Norwegian coastal areas, the copepod Calanus finmarchicus. Copepods were subjected to two 96-hr tests: (1) acute toxicity test where mortality was determined and (2) treated copepods were exposed to concentrations below the No Observed Effect Concentration (0.75 mg/L) H2O2 and analyzed for antioxidant enzyme activities, as well as levels of glutathione (GSH) and malondialdehyde (MDA). Compared to available and comparable LC50 values from the literature, our results suggest that C. finmarchicus is highly sensitive to H2O2. However, 96-hr exposure of C. finmarchicus to 0.75 mg H2O2/L did not significantly affect the antioxidant systems even though the concentration is just below the level where mortality is expected. Data suggest that aqueous H2O2 exposure did not cause cellular accumulation with associated oxidative stress, but rather produced acute effects on copepod surface (carapace). Further investigation is required to ensure that aqueous exposure during H2O2 treatment in salmon fish farms does not exert adverse effects on local non-target crustacean species and populations. In particular, studies on copepod developmental stages with a more permeable carapace are warranted.


Assuntos
Copépodes/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Resistência a Medicamentos , Contaminação de Alimentos/prevenção & controle , Glutationa/metabolismo , Dose Letal Mediana , Malondialdeído/metabolismo , Nível de Efeito Adverso não Observado , Noruega , Espécies Reativas de Oxigênio/metabolismo , Água do Mar/química , Testes de Toxicidade Aguda
19.
J Toxicol Environ Health A ; 80(16-18): 845-861, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28841366

RESUMO

Inorganic mercury (Hg) is highly toxic to organisms including crustaceans and displays multiple toxic modes of action (MoA). The main aim of this investigation was to assess the acute and sublethal toxicity mediated by mercury chloride (HgCl2) in the marine copepod Calanus finmarchicus. A combination of short-term static studies to determine acute toxicity and a transcriptional investigation to characterize the sublethal MoA of HgCl2 were conducted with an in-house continuous culture of C. finmarchicus. Transcriptional changes were determined by a custom 6.6 k C. finmarchicus Agilent oligonucleotide microarray and quantitative RT-PCR analysis. Data demonstrate that HgCl2 produced a concentration- and time-dependent reduction in survival (NOEC48 h = 6.9 µg/L [Hg2+] and LC50 of 279, 73, 48, and 34 µg/L [Hg2+] after 24, 48, 72, and 96 h, respectively) and that exposure to sublethal concentrations of HgCl2 (5 µg/L [Hg2+]) induced differential expression of 98 features (probes) on the microarray. Gene ontology (GO) and toxicological pathway analyses suggested that the main MOA were (1) uncoupling of mitochondrial oxidative phosphorylation (OXPHOS) and ATP production, (2) oxidative stress and macromolecular damage, (3) inactivation of cellular enzymes, (4) induction of cellular apoptosis and autophagocytosis, (5) over-excitation of glutamate receptors (neurotoxicity), (6) disruption of calcium homeostasis and signaling, and (7) modulation of nuclear receptor activity involved in vitamin D receptor signaling. Quantitative RT-PCR analysis verified that oligoarray performed reliably in terms of specificity and response, thus demonstrating that Hg2+ exerts multiple potential MoA in C. finmarchicus.


Assuntos
Copépodes/efeitos dos fármacos , Cloreto de Mercúrio/toxicidade , Mercúrio/toxicidade , Animais , Biologia Computacional , Copépodes/metabolismo , Ontologia Genética , Análise em Microsséries , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Transmissão Sináptica/efeitos dos fármacos , Testes de Toxicidade Aguda , Poluentes Químicos da Água/toxicidade
20.
J Toxicol Environ Health A ; 80(16-18): 881-894, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28841382

RESUMO

Copepods of the genus Calanus have the potential for accumulating lipophilic oil components due to their high lipid content and found to filter and ingest oil droplets during exposure. As female copepods produce eggs at the expense of lipid storage, there is a concern for transfer of lipophilic contaminants to offspring. To assess the potential for maternal transfer of oil components, ovigerous female copepods (Calanus finmarchicus) were exposed to filtered and unfiltered oil dispersions for 4 days, collected and eggs maintained in clean seawater and hatching and gene expression examined in hatched nauplii. Oil droplet exposure contributed to polycyclic aromatic hydrocarbon (PAH) uptake in dispersion-treated adult copepods, as displayed through PAH body residue analyses and fluorescence microscopy. Applying the latter methodology, transfer of heavy PAH from copepod mothers to offspring were detected Subtle effects were observed in offspring as evidenced by a temporal reduction in hatching success appear to be occurring only when mothers were exposed to the unfiltered oil dispersions. Offspring reared in clean water through to late naupliar stages were collected for RNA extraction and preparation of libraries for high-throughput transcriptome sequencing. Differentially expressed genes were identified through pairwise comparisons between treatments. Among these, several expressed genes have known roles in responses to chemical stress including xenobiotic metabolism enzymes, antioxidants, chaperones, and components of the inflammatory response. While gene expression results suggest a transgenerational activation of stress responses, the increase in relatively small number of differentially expressed genes suggests a minor long-term effect on offspring following maternal exposure.


Assuntos
Copépodes/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Exposição Materna/efeitos adversos , Petróleo/toxicidade , RNA/genética , RNA/isolamento & purificação , Reprodução/efeitos dos fármacos , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA