RESUMO
Temporal lobe epilepsy (TLE) is a common epilepsy syndrome with a complex etiology. Despite evidence for the participation of genetic factors, the genetic basis of TLE remains largely unknown. A role for the galanin neuropeptide in the regulation of epileptic seizures has been established in animal models more than two decades ago. However, until now there was no report of pathogenic mutations in GAL, the galanin-encoding gene, and therefore its role in human epilepsy was not established. Here, we studied a family with a pair of monozygotic twins affected by TLE and two unaffected siblings born to healthy parents. Exome sequencing revealed that both twins carried a novel de novo mutation (p.A39E) in the GAL gene. Functional analysis revealed that the p.A39E mutant showed antagonistic activity against galanin receptor 1 (GalR1)-mediated response, and decreased binding affinity and reduced agonist properties for GalR2. These findings suggest that the p.A39E mutant could impair galanin signaling in the hippocampus, leading to increased glutamatergic excitation and ultimately to TLE. In a cohort of 582 cases, we did not observe any pathogenic mutations indicating that mutations in GAL are a rare cause of TLE. The identification of a novel de novo mutation in a biologically-relevant candidate gene, coupled with functional evidence that the mutant protein disrupts galanin signaling, strongly supports GAL as the causal gene for the TLE in this family. Given the availability of galanin agonists which inhibit seizures, our findings could potentially have direct implications for the development of anti-epileptic treatment.
Assuntos
Epilepsia do Lobo Temporal/genética , Galanina/genética , Adulto , Animais , Sequência de Bases , Células CHO , Cricetinae , Cricetulus , Análise Mutacional de DNA , Estudos de Associação Genética , Humanos , Mutação de Sentido Incorreto , Linhagem , Ligação Proteica , Transdução de SinaisRESUMO
Dyspnoea is a common symptom of exercice intolerance. Tests performed at rest often leave the reason open. Cardiopulmonary exercise testing (CPET) is a tool for the qualitative and quantitative assessment of the cardio-circulatory, pulmonary and metabolic response to exercise. It is the gold-standard in the evaluation of dyspnoea and identifying its etiology (obstructive/restrictive lung disease, heart failure, physical fitness ). CPET is particularly useful, if previous evaluations including history, physical examination, ECG, pulmonary function testing (PFT), X-ray, blood tests, and blood gases do not lead to a decisive diagnosis. The measurement of peak oxygen consumption, carbon dioxide production, minute ventilation and heart rate provides substantial diagnostic and prognostic information in a wide variety of clinical settings. Interpreting CPET requires pathophysiological knowledge and can sometimes be challenging. An easy-to-use algorithm may provide a useful assistance for interpretation the results. In addition to its use as a diagnostic tool, CPET can be used to support sportsmen reaching their training goals and evaluate subject's ability to work.
Assuntos
Dispneia/etiologia , Eletrocardiografia , Teste de Esforço/instrumentação , Teste de Esforço/métodos , Algoritmos , Gasometria , Doença Crônica/prevenção & controle , Humanos , Aptidão Física/fisiologiaRESUMO
Epilepsy comprises several syndromes, amongst the most common being mesial temporal lobe epilepsy with hippocampal sclerosis. Seizures in mesial temporal lobe epilepsy with hippocampal sclerosis are typically drug-resistant, and mesial temporal lobe epilepsy with hippocampal sclerosis is frequently associated with important co-morbidities, mandating the search for better understanding and treatment. The cause of mesial temporal lobe epilepsy with hippocampal sclerosis is unknown, but there is an association with childhood febrile seizures. Several rarer epilepsies featuring febrile seizures are caused by mutations in SCN1A, which encodes a brain-expressed sodium channel subunit targeted by many anti-epileptic drugs. We undertook a genome-wide association study in 1018 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 7552 control subjects, with validation in an independent sample set comprising 959 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 3591 control subjects. To dissect out variants related to a history of febrile seizures, we tested cases with mesial temporal lobe epilepsy with hippocampal sclerosis with (overall n = 757) and without (overall n = 803) a history of febrile seizures. Meta-analysis revealed a genome-wide significant association for mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures at the sodium channel gene cluster on chromosome 2q24.3 [rs7587026, within an intron of the SCN1A gene, P = 3.36 × 10(-9), odds ratio (A) = 1.42, 95% confidence interval: 1.26-1.59]. In a cohort of 172 individuals with febrile seizures, who did not develop epilepsy during prospective follow-up to age 13 years, and 6456 controls, no association was found for rs7587026 and febrile seizures. These findings suggest SCN1A involvement in a common epilepsy syndrome, give new direction to biological understanding of mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures, and open avenues for investigation of prognostic factors and possible prevention of epilepsy in some children with febrile seizures.
Assuntos
Epilepsia do Lobo Temporal/genética , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Esclerose/genética , Convulsões Febris/genética , Epilepsia do Lobo Temporal/etiologia , Estudo de Associação Genômica Ampla/métodos , Hipocampo/patologia , Humanos , Estudos Prospectivos , Convulsões Febris/diagnóstico , Lobo Temporal/patologiaRESUMO
Deletions at 16p13.11 are associated with schizophrenia, mental retardation, and most recently idiopathic generalized epilepsy. To evaluate the role of 16p13.11 deletions, as well as other structural variation, in epilepsy disorders, we used genome-wide screens to identify copy number variation in 3812 patients with a diverse spectrum of epilepsy syndromes and in 1299 neurologically-normal controls. Large deletions (> 100 kb) at 16p13.11 were observed in 23 patients, whereas no control had a deletion greater than 16 kb. Patients, even those with identically sized 16p13.11 deletions, presented with highly variable epilepsy phenotypes. For a subset of patients with a 16p13.11 deletion, we show a consistent reduction of expression for included genes, suggesting that haploinsufficiency might contribute to pathogenicity. We also investigated another possible mechanism of pathogenicity by using hybridization-based capture and next-generation sequencing of the homologous chromosome for ten 16p13.11-deletion patients to look for unmasked recessive mutations. Follow-up genotyping of suggestive polymorphisms failed to identify any convincing recessive-acting mutations in the homologous interval corresponding to the deletion. The observation that two of the 16p13.11 deletions were larger than 2 Mb in size led us to screen for other large deletions. We found 12 additional genomic regions harboring deletions > 2 Mb in epilepsy patients, and none in controls. Additional evaluation is needed to characterize the role of these exceedingly large, non-locus-specific deletions in epilepsy. Collectively, these data implicate 16p13.11 and possibly other large deletions as risk factors for a wide range of epilepsy disorders, and they appear to point toward haploinsufficiency as a contributor to the pathogenicity of deletions.
Assuntos
Cromossomos Humanos Par 16 , Suscetibilidade a Doenças , Epilepsia/genética , Mutação , Deleção de Sequência , Humanos , Hibridização de Ácido Nucleico/genética , SíndromeRESUMO
PURPOSE: Epilepsies have a highly heterogeneous background with a strong genetic contribution. The variety of unspecific and overlapping syndromic and nonsyndromic phenotypes often hampers a clear clinical diagnosis and prevents straightforward genetic testing. Knowing the genetic basis of a patient's epilepsy can be valuable not only for diagnosis but also for guiding treatment and estimating recurrence risks. METHODS: To overcome these diagnostic restrictions, we composed a panel of genes for Next Generation Sequencing containing the most relevant epilepsy genes and covering the most relevant epilepsy phenotypes known so far. With this method, 265 genes were analyzed per patient in a single step. We evaluated this panel on a pilot cohort of 33 index patients with concise epilepsy phenotypes or with a severe but unspecific seizure disorder covering both sporadic and familial cases. KEY FINDINGS: We identified presumed disease-causing mutations in 16 of 33 patients comprising sequence alterations in frequently as well as in less commonly affected genes. The detected aberrations encompassed known and unknown point mutations (SCN1A p.R222X, p. E289V, p.379R, p.R393H; SCN2A p.V208E; STXBP1 p.R122X; KCNJ10 p.L68P, p.I129V; KCTD7 p.L108M; KCNQ3 p.P574S; ARHGEF9 p.R290H; SMS p.F58L; TPP1 p.Q278R, p.Q422H; MFSD8 p.T294K), a putative splice site mutation (SCN1A c.693A> p.T/P231P) and small deletions (SCN1A p.F1330Lfs3X [1 bp]; MFSD8 p.A138Dfs10X [7 bp]). All mutations have been confirmed by conventional Sanger sequencing and, where possible, validated by parental testing and segregation analysis. In three patients with either Dravet syndrome or myoclonic epilepsy, we detected SCN1A mutations (p.R222X, p.P231P, p.R393H), even though other laboratories had previously excluded aberrations of this gene by Sanger sequencing or high-resolution melting analysis. SIGNIFICANCE: We have developed a fast and cost-efficient diagnostic screening method to analyze the genetic basis of epilepsies. We were able to detect mutations in patients with clear and with unspecific epilepsy phenotypes, to uncover the genetic basis of many so far unresolved cases with epilepsy including mutation detection in cases in which previous conventional methods yielded falsely negative results. Our approach thus proved to be a powerful diagnostic tool that may contribute to collecting information on both common and unknown epileptic disorders and in delineating associated phenotypes of less frequently mutated genes.
Assuntos
Epilepsia/genética , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsia/diagnóstico , Feminino , Genes/genética , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Mutação/genética , Fenótipo , Análise de Sequência de DNA , Tripeptidil-Peptidase 1 , Adulto JovemRESUMO
Partial epilepsies have a substantial heritability. However, the actual genetic causes are largely unknown. In contrast to many other common diseases for which genetic association-studies have successfully revealed common variants associated with disease risk, the role of common variation in partial epilepsies has not yet been explored in a well-powered study. We undertook a genome-wide association-study to identify common variants which influence risk for epilepsy shared amongst partial epilepsy syndromes, in 3445 patients and 6935 controls of European ancestry. We did not identify any genome-wide significant association. A few single nucleotide polymorphisms may warrant further investigation. We exclude common genetic variants with effect sizes above a modest 1.3 odds ratio for a single variant as contributors to genetic susceptibility shared across the partial epilepsies. We show that, at best, common genetic variation can only have a modest role in predisposition to the partial epilepsies when considered across syndromes in Europeans. The genetic architecture of the partial epilepsies is likely to be very complex, reflecting genotypic and phenotypic heterogeneity. Larger meta-analyses are required to identify variants of smaller effect sizes (odds ratio<1.3) or syndrome-specific variants. Further, our results suggest research efforts should also be directed towards identifying the multiple rare variants likely to account for at least part of the heritability of the partial epilepsies. Data emerging from genome-wide association-studies will be valuable during the next serious challenge of interpreting all the genetic variation emerging from whole-genome sequencing studies.
Assuntos
Epilepsias Parciais/diagnóstico , Epilepsias Parciais/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Feminino , Humanos , Internacionalidade , Masculino , Polimorfismo de Nucleotídeo Único/genética , SíndromeRESUMO
Recently, mutations and deletions in the GRIN2A gene have been identified to predispose to benign and severe idiopathic focal epilepsies (IFE), revealing a higher incidence of GRIN2A alterations among the more severe phenotypes. This study aimed to explore the phenotypic boundaries of GRIN2A mutations by investigating patients with the two most common epilepsy syndromes: (i) idiopathic generalized epilepsy (IGE) and (ii) temporal lobe epilepsy (TLE). Whole exome sequencing data of 238 patients with IGE as well as Sanger sequencing of 84 patients with TLE were evaluated for GRIN2A sequence alterations. Two additional independent cohorts comprising 1469 IGE and 330 TLE patients were screened for structural deletions (>40kb) involving GRIN2A. Apart from a presumably benign, non-segregating variant in a patient with juvenile absence epilepsy, neither mutations nor deletions were detected in either cohort. These findings suggest that mutations in GRIN2A preferentially are involved in genetic variance of pediatric IFE and do not contribute significantly to either adult focal epilepsies as TLE or generalized epilepsies.