Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33208442

RESUMO

Hepatitis C virus (HCV) infection triggers Golgi fragmentation through the Golgi-resident protein immunity-related GTPase M (IRGM). Here, we report the roles of NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) and ASC (apoptosis-associated speck-like protein containing a caspase activation and recruitment domain [CARD]), two inflammasome components, in the initial events leading to this fragmentation. We show that ASC resides at the Golgi with IRGM at homeostasis. Upon infection, ASC dissociates from both IRGM and the Golgi and associates with HCV-induced NLRP3. NLRP3 silencing inhibits Golgi fragmentation. ASC silencing disrupts the Golgi structure in both control and infected cells and reduces the localization of IRGM at the Golgi. IRGM depletion in the ASC-silenced cells cannot totally restore the Golgi structure. These data highlight a role for ASC, upstream of the formation of the inflammasome, in regulating IRGM through its control on the Golgi. A similar mechanism occurs in response to nigericin treatment, but not in cells infected with another member of the Flaviviridae family, Zika virus (ZIKV). We propose a model for a newly ascribed function of the inflammasome components in Golgi structural remodeling during certain stimuli.IMPORTANCE Numerous pathogens can affect cellular homeostasis and organelle dynamics. Hepatitis C virus (HCV) triggers Golgi fragmentation through the immunity-related GTPase M (IRGM), a resident Golgi protein, to enhance its lipid supply for replication. Here, we reveal the role of the inflammasome components NLRP3 and ASC in this process, thus uncovering a new interplay between effectors of inflammation and viral infection or stress. We show that the inflammasome component ASC resides at the Golgi under homeostasis and associates with IRGM. Upon HCV infection, ASC is recruited to NLRP3 and dissociates from IRGM, causing Golgi fragmentation. Our results uncover that aside from their known function in the inflammation response, these host defense regulators also ensure the maintenance of intact intracellular structure in homeostasis, while their activation relieves factors leading to Golgi remodeling.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Complexo de Golgi/fisiologia , Hepacivirus/isolamento & purificação , Hepatite C/virologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Apoptose , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas de Ligação ao GTP/genética , Complexo de Golgi/virologia , Hepatite C/metabolismo , Hepatite C/patologia , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
2.
Int J Mol Sci ; 22(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34639191

RESUMO

Ulcerative colitis is characterized by relapsing and remitting colonic mucosal inflammation. During the early stages of viral infection, innate immune defenses are activated, leading to the rapid release of cytokines and the subsequent initiation of downstream responses including inflammation. Previously, intestinal viruses were thought to be either detrimental or neutral to the host. However, persisting viruses may have a role as resident commensals and confer protective immunity during inflammation. On the other hand, the dysregulation of gut mucosal immune responses to viruses can trigger excessive, pathogenic inflammation. The purpose of this review is to discuss virus-induced innate immune responses that are at play in ulcerative colitis.


Assuntos
Colite Ulcerativa/patologia , Interações entre Hospedeiro e Microrganismos , Imunidade Inata/imunologia , Animais , Colite Ulcerativa/etiologia , Humanos
3.
Front Immunol ; 14: 1097383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911731

RESUMO

There are many unanswered questions regarding responses to proinflammatory signals in intestinal epithelial cells (IECs). For example, chemokines secreted by IECs upon external stimuli play multifunctional roles in both homeostasis and during inflammation. Several chemokines are upregulated during active inflammatory bowel disease (IBD), which is associated with an increased influx of immune cells into the gut mucosa. Therefore, studies on how chemokines are regulated in the intestinal epithelium may identify putative treatment targets in IBD. More recently, patient-derived ex vivo models such as intestinal organoids have facilitated molecular analysis of epithelial alterations in IBD patients own cells. Here, we describe refined experimental protocols and methods for the generation and maintenance of IBD patient-derived colonic organoids (colonoids) culture. We also give detailed description of medium, and supplements needed for colonoid establishment, growth, and differentiation, including production of Wnt-3A and Rspondin1 enriched media. Further, we present protocols for RNA and protein isolation from human colonoids, and subsequent gene expression analysis and Western blotting for e.g., signal transduction studies. We also describe how to process colonoids for chemokine protein expression analysis such as immunostaining, confocal imaging, and detection of secreted chemokines by e.g., enzyme-linked immunosorbent assay (ELISA). As proof of principle, we give examples of how the chemoattractant CCL20 can be regulated and expressed in colonoids derived from IBD-patients and healthy controls upon ligands-driven inflammation.


Assuntos
Colo , Doenças Inflamatórias Intestinais , Humanos , Colo/metabolismo , Células Epiteliais/metabolismo , Organoides , Inflamação/metabolismo
4.
Front Immunol ; 13: 882277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655783

RESUMO

Major Histocompatibility Complex (MHC)-I and -II genes are upregulated in intestinal epithelial cells (IECs) during active inflammatory bowel diseases (IBD), but little is known about how IBD-relevant pro-inflammatory signals and IBD drugs can regulate their expression. We have previously shown that the synthetic analog of double-stranded RNA (dsRNA) Polyinosinic:polycytidylic acid (Poly(I:C)), induces interferon stimulated genes (ISGs) in colon organoids (colonoids). These ISGs may be involved in the induction of antigen presentation. In the present study, we applied colonoids derived from non-IBD controls and ulcerative colitis patients to identify induction and effects of IBD-drugs on antigen presentation in IECs in the context of Tumor Necrosis Factor (TNF)-driven inflammation. By RNA sequencing, we show that a combination of TNF and Poly(I:C) strongly induced antigen-presentation gene signatures in colonoids, including expression of MHC-II genes. MHC-I and -II protein expression was confirmed by immunoblotting and immunofluorescence. TNF+Poly(I:C)-dependent upregulation of MHC-II expression was associated with increased expression of Janus Kinases JAK1/2 as well as increased activation of transcription factor Signal transducer and activator of transcription 1 (STAT1). Accordingly, pre-treatment of colonoids with IBD-approved pan-Janus Kinase (JAK) inhibitor Tofacitinib led to the downregulation of TNF+Poly(I:C)-dependent MHC-II expression associated with the abrogation of STAT1 activation. Pre-treatment with corticosteroid Budesonide, commonly used in IBD, did not alter MHC-II expression. Collectively, our results identify a regulatory role for IBD-relevant pro-inflammatory signals on MHC-II expression that is influenced by Tofacitinib.


Assuntos
Doenças Inflamatórias Intestinais , Inibidores de Janus Quinases , Colo/patologia , Epitélio/metabolismo , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Inibidores de Janus Quinases/uso terapêutico , Complexo Principal de Histocompatibilidade , Piperidinas , Poli I-C/farmacologia , Poli I-C/uso terapêutico , Pirimidinas , Fator de Necrose Tumoral alfa/uso terapêutico
5.
Sci Rep ; 7(1): 16129, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170442

RESUMO

PKR is a cellular kinase involved in the regulation of the integrative stress response (ISR) and pro-inflammatory pathways. Two N-terminal dsRNA Binding Domains (DRBD) are required for activation of PKR, by interaction with either dsRNA or PACT, another cellular DRBD-containing protein. A role for PKR and PACT in inflammatory processes linked to neurodegenerative diseases has been proposed and raised interest for pharmacological PKR inhibitors. However, the role of PKR in inflammation is subject to controversy. We identified the flavonoid luteolin as an inhibitor of the PKR/PACT interaction at the level of their DRBDs using high-throughput screening of chemical libraries by homogeneous time-resolved fluorescence. This was further validated using NanoLuc-Based Protein Complementation Assay. Luteolin inhibits PKR phosphorylation, the ISR and the induction of pro-inflammatory cytokines in human THP1 macrophages submitted to oxidative stress and toll-like receptor (TLR) agonist. Similarly, luteolin inhibits induction of pro-inflammatory cytokines in murine microglial macrophages. In contrast, luteolin increased activation of the inflammasome, in a PKR-independent manner. Collectively, these data delineate the importance of PKR in the inflammation process to the ISR and induction of pro-inflammatory cytokines. Pharmacological inhibitors of PKR should be used in combination with drugs targeting directly the inflammasome.


Assuntos
Inflamação/metabolismo , Proteínas de Ligação a RNA/metabolismo , eIF-2 Quinase/metabolismo , Células HEK293 , Humanos , Inflamação/imunologia , Fosforilação/genética , Fosforilação/fisiologia , Ligação Proteica/genética , Ligação Proteica/fisiologia , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/genética , eIF-2 Quinase/genética
6.
J Mol Diagn ; 7(1): 36-9, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15681472

RESUMO

Paraffin-embedded tissue is an important source of material for molecular pathology and genetic investigations. We used DNA isolated from microdissected formalin-fixed, paraffin-embedded gastric tumors for mutation analysis of a region of the human gene for uracil-DNA glycosylase (UNG), encoding the UNG catalytic domain, and detected apparent base substitutions which, after further investigation, proved to be polymerase chain reaction (PCR) artifacts. We demonstrate that low DNA template input in PCR can generate false mutations, mainly guanine to adenine transitions, in a sequence-dependent manner. One such mutation is identical to a mutation previously reported in the UNG gene in human glioma. This phenomenon was not caused by microheterogeneity in the sample material because the same artifact was seen after amplification of a homogenous, diluted plasmid. We did not observe genuine mutations in the UNG gene in 16 samples. Our results demonstrate that caution should be taken when interpreting data from PCR-based analysis of somatic mutations using low amounts of template DNA, and that methods used to enrich putative subpopulations of mutant molecules in a sample material could, in essence, be a further amplification of sequence-dependent PCR-generated artifacts.


Assuntos
Artefatos , DNA Glicosilases/genética , Análise Mutacional de DNA , DNA de Neoplasias/análise , Reação em Cadeia da Polimerase , Domínio Catalítico/genética , Humanos , Mutagênese , Mutação/genética , Moldes Genéticos , Uracila-DNA Glicosidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA