Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nature ; 501(7468): 551-5, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-23842494

RESUMO

Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission, and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.


Assuntos
Vírus da Influenza A , Influenza Humana/virologia , Infecções por Orthomyxoviridae/virologia , Replicação Viral , Animais , Antivirais/farmacologia , Células Cultivadas , Galinhas/virologia , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Cães , Inibidores Enzimáticos/farmacologia , Feminino , Furões/virologia , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A/química , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/patogenicidade , Influenza Humana/tratamento farmacológico , Macaca fascicularis/virologia , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Doenças dos Macacos/patologia , Doenças dos Macacos/virologia , Neuraminidase/antagonistas & inibidores , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/transmissão , Codorniz/virologia , Suínos/virologia , Porco Miniatura/virologia , Replicação Viral/efeitos dos fármacos
2.
Emerg Infect Dis ; 24(7): 1128-1238, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29912683

RESUMO

Influenza viruses exist in each host as a collection of genetically diverse variants, which might enhance their adaptive potential. To assess the genetic and functional diversity of highly pathogenic avian influenza A(H5N1) viruses within infected humans, we used deep-sequencing methods to characterize samples obtained from infected patients in northern Vietnam during 2004-2010 on different days after infection, from different anatomic sites, or both. We detected changes in virus genes that affected receptor binding, polymerase activity, or interferon antagonism, suggesting that these factors could play roles in influenza virus adaptation to humans. However, the frequency of most of these mutations remained low in the samples tested, implying that they were not efficiently selected within these hosts. Our data suggest that adaptation of influenza A(H5N1) viruses is probably stepwise and depends on accumulating combinations of mutations that alter function while maintaining fitness.


Assuntos
Variação Genética , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/genética , Influenza Humana/epidemiologia , Influenza Humana/virologia , Animais , Linhagem Celular , Genes Virais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , História do Século XXI , Humanos , Influenza Humana/história , Tipagem Molecular , Filogenia , Vigilância da População , Vietnã/epidemiologia , Tropismo Viral
3.
Nature ; 486(7403): 420-8, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22722205

RESUMO

Highly pathogenic avian H5N1 influenza A viruses occasionally infect humans, but currently do not transmit efficiently among humans. The viral haemagglutinin (HA) protein is a known host-range determinant as it mediates virus binding to host-specific cellular receptors. Here we assess the molecular changes in HA that would allow a virus possessing subtype H5 HA to be transmissible among mammals. We identified a reassortant H5 HA/H1N1 virus-comprising H5 HA (from an H5N1 virus) with four mutations and the remaining seven gene segments from a 2009 pandemic H1N1 virus-that was capable of droplet transmission in a ferret model. The transmissible H5 reassortant virus preferentially recognized human-type receptors, replicated efficiently in ferrets, caused lung lesions and weight loss, but was not highly pathogenic and did not cause mortality. These results indicate that H5 HA can convert to an HA that supports efficient viral transmission in mammals; however, we do not know whether the four mutations in the H5 HA identified here would render a wholly avian H5N1 virus transmissible. The genetic origin of the remaining seven viral gene segments may also critically contribute to transmissibility in mammals. Nevertheless, as H5N1 viruses continue to evolve and infect humans, receptor-binding variants of H5N1 viruses with pandemic potential, including avian-human reassortant viruses as tested here, may emerge. Our findings emphasize the need to prepare for potential pandemics caused by influenza viruses possessing H5 HA, and will help individuals conducting surveillance in regions with circulating H5N1 viruses to recognize key residues that predict the pandemic potential of isolates, which will inform the development, production and distribution of effective countermeasures.


Assuntos
Adaptação Fisiológica/genética , Furões/virologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Vírus Reordenados/patogenicidade , Sistema Respiratório/virologia , Animais , Bioterrorismo/prevenção & controle , Aves/virologia , Líquidos Corporais/virologia , Linhagem Celular , Cães , Evolução Molecular , Feminino , Células HEK293 , Células HeLa , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Temperatura Alta , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H1N1/fisiologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/fisiologia , Influenza Aviária/transmissão , Influenza Aviária/virologia , Influenza Humana/prevenção & controle , Influenza Humana/transmissão , Influenza Humana/virologia , Epidemiologia Molecular/métodos , Pandemias , Vigilância da População/métodos , Estabilidade Proteica , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Vírus Reordenados/fisiologia , Receptores Virais/química , Receptores Virais/metabolismo , Sistema Respiratório/anatomia & histologia , Medidas de Segurança , Zoonoses/transmissão , Zoonoses/virologia
4.
J Virol ; 90(6): 2981-92, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26719265

RESUMO

UNLABELLED: Highly pathogenic avian influenza viruses of the H5N1 subtype continue to circulate in poultry in Asia, Africa, and the Middle East. Recently, outbreaks of novel reassortant H5 viruses have also occurred in North America. Although the number of human infections with highly pathogenic H5N1 influenza viruses continues to rise, these viruses remain unable to efficiently transmit between humans. However, we and others have identified H5 viruses capable of respiratory droplet transmission in ferrets. Two experimentally introduced mutations in the viral hemagglutinin (HA) receptor-binding domain conferred binding to human-type receptors but reduced HA stability. Compensatory mutations in HA (acquired during virus replication in ferrets) were essential to restore HA stability. These stabilizing mutations in HA also affected the pH at which HA undergoes an irreversible switch to its fusogenic form in host endosomes, a crucial step for virus infectivity. To identify additional stabilizing mutations in an H5 HA, we subjected a virus library possessing random mutations in the ectodomain of an H5 HA (altered to bind human-type receptors) to three rounds of treatment at 50°C. We isolated several mutants that maintained their human-type receptor-binding preference but acquired an appreciable increase in heat stability and underwent membrane fusion at a lower pH; collectively, these properties may aid H5 virus respiratory droplet transmission in mammals. IMPORTANCE: We have identified mutations in HA that increase its heat stability and affect the pH that triggers an irreversible conformational change (a prerequisite for virus infectivity). These mutations were identified in the genetic background of an H5 HA protein that was mutated to bind to human cells. The ability to bind to human-type receptors, together with physical stability and an altered pH threshold for HA conformational change, may facilitate avian influenza virus transmission via respiratory droplets in mammals.


Assuntos
Adaptação Biológica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Virus da Influenza A Subtipo H5N1/fisiologia , Mutação de Sentido Incorreto , Ligação Viral , Humanos , Concentração de Íons de Hidrogênio , Virus da Influenza A Subtipo H5N1/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Estabilidade Proteica , Receptores Virais/metabolismo , Temperatura , Internalização do Vírus
5.
J Virol ; 88(1): 768-73, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24173215

RESUMO

Two ferret-adapted H5N1 viruses capable of respiratory droplet transmission have been reported with mutations in the hemagglutinin receptor-binding site and stalk domains. Glycan microarray analysis reveals that both viruses exhibit a strong shift toward binding to "human-type" α2-6 sialosides but with notable differences in fine specificity. Crystal structure analysis further shows that the stalk mutation causes no obvious perturbation of the receptor-binding pocket, consistent with its impact on hemagglutinin stability without affecting receptor specificity.


Assuntos
Hemaglutininas/metabolismo , Virus da Influenza A Subtipo H5N1/fisiologia , Humanos
6.
J Virol ; 86(17): 9361-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22718834

RESUMO

The first influenza pandemic of the 21st century was caused by novel H1N1 viruses that emerged in early 2009. Molecular evolutionary analyses of the 2009 pandemic influenza A H1N1 [A(H1N1)pdm09] virus revealed two major clusters, cluster I and cluster II. Although the pathogenicity of viruses belonging to cluster I, which became extinct by the end of 2009, has been examined in a nonhuman primate model, the pathogenic potential of viruses belonging to cluster II, which has spread more widely in the world, has not been studied in this animal model. Here, we characterized two Norwegian isolates belonging to cluster II, namely, A/Norway/3568/2009 (Norway3568) and A/Norway/3487-2/2009 (Norway3487), which caused distinct clinical symptoms, despite their genetic similarity. We observed more efficient replication in cultured cells and delayed virus clearance from ferret respiratory organs for Norway3487 virus, which was isolated from a severe case, compared with the efficiency of replication and time of clearance of Norway3568 virus, which was isolated from a mild case. Moreover, Norway3487 virus to some extent caused more severe lung damage in nonhuman primates than did Norway3568 virus. Our data suggest that the distinct replicative and pathogenic potentials of these two viruses may result from differences in their biological properties (e.g., the receptor-binding specificity of hemagglutinin and viral polymerase activity).


Assuntos
Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/virologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Feminino , Furões , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/epidemiologia , Macaca , Dados de Sequência Molecular , Noruega/epidemiologia , Pandemias , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência , Replicação Viral
7.
J Virol ; 85(24): 13195-203, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21937653

RESUMO

The first influenza pandemic of the 21st century was caused by novel H1N1 viruses that emerged in early 2009. An Asp-to-Gly change at position 222 of the receptor-binding protein hemagglutinin (HA) correlates with more-severe infections in humans. The amino acid at position 222 of HA contributes to receptor-binding specificity with Asp (typically found in human influenza viruses) and Gly (typically found in avian and classic H1N1 swine influenza viruses), conferring binding to human- and avian-type receptors, respectively. Here, we asked whether binding to avian-type receptors enhances influenza virus pathogenicity. We tested two 2009 pandemic H1N1 viruses possessing HA-222G (isolated from severe cases) and two viruses that possessed HA-222D. In glycan arrays, viruses possessing HA-222D preferentially bound to human-type receptors, while those encoding HA-222G bound to both avian- and human-type receptors. This difference in receptor binding correlated with efficient infection of viruses possessing HA-222G, compared to those possessing HA-222D, in human lung tissue, including alveolar type II pneumocytes, which express avian-type receptors. In a nonhuman primate model, infection with one of the viruses possessing HA-222G caused lung damage more severe than did infection with a virus encoding HA-222D, although these pathological differences were not observed for the other virus pair with either HA-222G or HA-222D. These data demonstrate that the acquisition of avian-type receptor-binding specificity may result in more-efficient infection of human alveolar type II pneumocytes and thus more-severe lung damage. Collectively, these findings suggest a new mechanism by which influenza viruses may become more pathogenic in mammals, including humans.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H1N1/patogenicidade , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Receptores Virais/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Pulmão/patologia , Pulmão/virologia , Macaca , Receptores Virais/genética
8.
ACS Sens ; 6(3): 938-949, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33728910

RESUMO

A novel porous polydimethylsiloxane (PDMS)-based capacitive pressure sensor was fabricated by optimizing the dielectric layer porosity for wide-range pressure sensing applications in the sports field. The pressure sensor consists of a porous PDMS dielectric layer and two fabric-based conductive electrodes. The porous PDMS dielectric layer was fabricated by introducing nitric acid (HNO3) into a mixture of PDMS and sodium hydrogen bicarbonate (NaHCO3) to facilitate the liberation of carbon dioxide (CO2) gas, which induces the creation of porous microstructures within the PDMS dielectric layer. Nine different pressure sensors (PS1, PS2,..., PS9) were fabricated in which the porosity (pore size, thickness) and dielectric constant of the PDMS dielectric layers were varied by changing the curing temperature, the mixing proportions of the HNO3/PDMS concentration, and the PDMS mixing ratio. The response of the fabricated pressure sensors was investigated for the applied pressures ranging from 0 to 1000 kPa. A relative capacitance change of ∼100, ∼323, and ∼485% was obtained by increasing the curing temperature from 110 to 140 to 170 °C, respectively. Similarly, a relative capacitance change of ∼170, ∼282, and ∼323% was obtained by increasing the HNO3/PDMS concentration from 10 to 15 to 20%, respectively. In addition, a relative capacitance change of ∼94, ∼323, and ∼460% was obtained by increasing the PDMS elastomer base/curing agent ratio from 5:1 to 10:1 to 15:1, respectively. PS9 exhibited the highest sensitivity over a wide pressure sensing range (low-pressure ranges (<50 Pa), 0.3 kPa-1; high-pressure ranges (0.2-1 MPa), 3.2 MPa-1). From the results, it was observed that the pressure sensors with dielectric layers prepared at relatively higher curing temperatures, higher HNO3 concentrations, and higher PDMS ratios resulted in increased porosity and provided the highest sensitivity. As an application demonstrator, a wearable fit cap was developed using an array of 16 pressure sensors for measuring and mapping the applied pressures on a player's head while wearing a helmet. The pressure mapping aids in observing and understanding the proper fit of the helmet in sports applications.


Assuntos
Dispositivos Eletrônicos Vestíveis , Dimetilpolisiloxanos , Capacitância Elétrica , Porosidade , Pressão
9.
J Econ Entomol ; 111(5): 2272-2280, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30020473

RESUMO

Edamame, Glycine max (L.) Merrill, consumption continues to rise in the United States. Improved understanding of production threats, including insect pests, could facilitate increasing production of edamame in the north-central United States. Two years of complimentary field and laboratory experiments were performed to assess insect pest populations on commercially available edamame varieties. Fourteen varieties of edamame and four grain-type soybean varieties were tested in the laboratory with soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), and subsets of these varieties were tested in the field with naturally occurring insect populations. In the laboratory, mean aphid densities on the edamame varieties Agate and Chiba Green did not differ from the aphid-resistant grain-type soybean. Among edamame, aphid densities on Agate, Chiba Green, and Kuroshinju were significantly lower than on Hokkaido Black. In both years of the field experiment, aphid densities were significantly lower on the aphid-resistant grain-type compared to all others varieties. In 2016, aphid populations on edamame varieties did not differ from the aphid-susceptible grain-types. However, in 2017 with greater aphid exposure, differences were seen among edamame varieties, and between edamame and aphid-susceptible grain-types. In both years, potato leafhopper, Empoasca fabae (Harris) (Hemiptera: Cicadellidae), densities tended to be higher on edamame varieties compared to grain-types, and varied significantly among edamame varieties. In a laboratory study, differences were seen among varieties in mean density of trichomes, with grain-types generally having more trichomes than edamame. Results of this research will provide a foundation for development of production recommendations for edamame in the north-central United States.


Assuntos
Glycine max , Insetos , Animais , Minnesota , Tricomas
10.
J Econ Entomol ; 111(6): 2946-2955, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30184079

RESUMO

Host plant resistance may be an effective option to manage soybean aphid, Aphis glycines (Matsumura) (Hemiptera: Aphididae), an important pest on soybean (Glycine max (L.) Merr.) in the U.S. Movement of soybean aphid may be altered by the presence of resistance (i.e., Rag [Resistance to Aphis glycines]) genes in soybean and changes in movement may affect the spatial pattern of a species. This study aims to assess the effects of Rag1 and pyramided Rag1+Rag2 aphid-resistant varieties on movement of soybean aphid under laboratory conditions and to evaluate potential impacts of this movement on spatial pattern of soybean aphid under field conditions. Results from the greenhouse study showed more movement of soybean aphid on both aphid-resistant varieties than the susceptible variety when aphids were placed on unifoliate leaves and no statistically significant difference in movement between Rag1 and pyramided Rag1+Rag2 varieties. When aphids were placed on new growth, movement was greater on pyramided Rag1+Rag2 than the Rag1 and susceptible variety. However, under field conditions, the spatial patterns of soybean aphid in plots with susceptible, Rag1 or pyramided Rag1+Rag2 varieties were aggregated and did not differ among varieties in vegetative and reproductive growth stages. These results are of relevance because they suggest that aspects of soybean aphid management that may be sensitive to changes in spatial pattern of the pest (e.g., natural enemy efficacy and sampling plans) may not be impacted by implementation of varieties with these resistance genes for host plant resistance.


Assuntos
Afídeos , Glycine max/genética , Movimento , Comportamento Espacial , Animais , Genes de Plantas
11.
Plant Genome ; 11(3)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30512046

RESUMO

Soybean aphid [ Matsumura (Hemiptera: Aphididae)] is the most damaging insect pest of soybean [ (L.) Merr.] in the Upper Midwest of the United States and is primarily controlled by insecticides. Soybean aphid resistance (i.e., genes) has been documented in some soybean accessions but more sources of resistance are needed. Incorporation of the resistance into marketed varieties has also been slow. Genome-wide association mapping can aid in identifying resistant accessions by correlating phenotypic data with single nucleotide polymorphisms (SNPs) across a genome. Aphid population measures from 2366 soybean accessions were collected from published studies screening cultivated soybean () and wild soybean ( Siebold & Zucc.) with aphids exhibiting Biotype 1, 2, or 3 characteristics. Genotypic data were obtained from the SoySNP50K high-density genotyping array previously used to genotype the USDA Soybean Germplasm Collection. Significant associations between SNPs and soybean aphid counts were found on 18 of the 20 soybean chromosomes. Significant SNPs were found on chromosomes 7, 8, 13, and 16 with known genes. SNPs were also significant on chromosomes 1, 2, 4 to 6, 9 to 12, 14, and 17 to 20 where genes have not yet been mapped, suggesting that many genes remain to be discovered. These SNPs can be used to determine accessions that are likely to have novel aphid resistance traits of value for breeding programs.


Assuntos
Resistência à Doença/genética , Glycine max/genética , Doenças das Plantas/genética , Animais , Afídeos , Genes de Plantas , Estudo de Associação Genômica Ampla , Doenças das Plantas/parasitologia , Polimorfismo de Nucleotídeo Único , Glycine max/parasitologia
12.
J Econ Entomol ; 110(5): 2235-2246, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28961778

RESUMO

Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a damaging invasive pest of soybean in the upper Midwest. Threshold-based insecticide applications are the primary control method for soybean aphid, but few insecticide groups are available (i.e., pyrethroids, organophosphates, and neonicotinoids). To quantify current levels of soybean aphid susceptibility to pyrethroids in the upper Midwest and monitor for insecticide resistance, leaf-dip bioassays were performed with λ-cyhalothrin in 2013-2015, and glass-vial bioassays were performed with λ-cyhalothrin and bifenthrin in 2015 and 2016. Soybean aphids were collected from 27 population-years in Minnesota and northern Iowa, and were compared with a susceptible laboratory colony with no known insecticide exposure since discovery of soybean aphid in North America in 2000. Field-collected aphids from some locations in leaf-dip and glass-vial bioassays had significantly lower rates of insecticide-induced mortality compared with the laboratory population, although field population susceptibility varied by year. In response to sublethal concentrations of λ-cyhalothrin, adult aphids from some locations required higher concentrations of insecticide to reduce nymph production compared with the laboratory population. The most resistant field population demonstrated 39-fold decreased mortality compared with the laboratory population. The resistance documented in this study, although relatively low for most field populations, indicates that there has been repeated selection pressure for pyrethroid resistance in some soybean aphid populations. Integrated pest management and insecticide resistance management should be practiced to slow further development of soybean aphid resistance to pyrethroids.


Assuntos
Afídeos , Inseticidas , Piretrinas , Animais , Resistência a Inseticidas , Meio-Oeste dos Estados Unidos , Glycine max
13.
Nat Microbiol ; 1(6): 16058, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27572841

RESUMO

Influenza viruses mutate frequently, necessitating constant updates of vaccine viruses. To establish experimental approaches that may complement the current vaccine strain selection process, we selected antigenic variants from human H1N1 and H3N2 influenza virus libraries possessing random mutations in the globular head of the haemagglutinin protein (which includes the antigenic sites) by incubating them with human and/or ferret convalescent sera to human H1N1 and H3N2 viruses. We also selected antigenic escape variants from human viruses treated with convalescent sera and from mice that had been previously immunized against human influenza viruses. Our pilot studies with past influenza viruses identified escape mutants that were antigenically similar to variants that emerged in nature, establishing the feasibility of our approach. Our studies with contemporary human influenza viruses identified escape mutants before they caused an epidemic in 2014-2015. This approach may aid in the prediction of potential antigenic escape variants and the selection of future vaccine candidates before they become widespread in nature.


Assuntos
Variação Antigênica , Antígenos Virais/genética , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Influenza Humana/prevenção & controle , Substituição de Aminoácidos , Animais , Antígenos Virais/imunologia , Evolução Molecular , Furões/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Evasão da Resposta Imune , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Influenza Humana/epidemiologia , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Estações do Ano
14.
Cell Host Microbe ; 15(6): 692-705, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24922572

RESUMO

Wild birds harbor a large gene pool of influenza A viruses that have the potential to cause influenza pandemics. Foreseeing and understanding this potential is important for effective surveillance. Our phylogenetic and geographic analyses revealed the global prevalence of avian influenza virus genes whose proteins differ only a few amino acids from the 1918 pandemic influenza virus, suggesting that 1918-like pandemic viruses may emerge in the future. To assess this risk, we generated and characterized a virus composed of avian influenza viral segments with high homology to the 1918 virus. This virus exhibited pathogenicity in mice and ferrets higher than that in an authentic avian influenza virus. Further, acquisition of seven amino acid substitutions in the viral polymerases and the hemagglutinin surface glycoprotein conferred respiratory droplet transmission to the 1918-like avian virus in ferrets, demonstrating that contemporary avian influenza viruses with 1918 virus-like proteins may have pandemic potential.


Assuntos
Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Influenza Humana/virologia , Substituição de Aminoácidos , Animais , Antivirais/farmacologia , Evolução Biológica , Aves/virologia , Modelos Animais de Doenças , Cães , Feminino , Furões/virologia , Humanos , Vírus da Influenza A/efeitos dos fármacos , Vacinas contra Influenza/farmacologia , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Células Madin Darby de Rim Canino/virologia , Camundongos Endogâmicos BALB C/virologia , Pandemias , Filogenia , Homologia de Sequência de Aminoácidos , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA