RESUMO
Allosteric integrase inhibitors (ALLINIs) of HIV-1 may hold promise as a novel mechanism for HIV therapeutics and cure. Scaffold modifications to the 4-(4,4-dimethylpiperidinyl) 2,6-dimethylpyridinyl class of ALLINIs provided a series of potent compounds with differentiated 5/6 fused ring systems. Notably, inhibitors containing the 1,2,4-triazolopyridine and imidazopyridine core exhibited single digit nM antiviral potency and low to moderate clearance after intravenous (IV) dosing in rat pharmacokinetic (PK) studies. The 1,2,4-triazolopyridines showed a higher oral exposure when compared to the imidazopyridines. Further modifications to the C5 substituent of the 1,2,4-triazolopyridines resulted in a new lead compound, which had improved rat IV/PO PK compared to the former lead compound GSK3739936, while maintaining antiviral potency. Structure-activity relationships (SAR) and rat pharmacokinetic profiles of this series are discussed.
Assuntos
Fármacos Anti-HIV , Inibidores de Integrase de HIV , Integrase de HIV , HIV-1 , Regulação Alostérica , Animais , Fármacos Anti-HIV/farmacologia , Integrase de HIV/metabolismo , Inibidores de Integrase de HIV/farmacologia , HIV-1/metabolismo , RatosRESUMO
GSK3532795 (formerly BMS-955176) is a second-generation HIV-1 maturation inhibitor that has shown broad spectrum antiviral activity and preclinical PK predictive of once-daily dosing in humans. Although efficacy was confirmed in clinical trials, the observation of gastrointestinal intolerability and the emergence of drug resistant virus in a Phase 2b clinical study led to the discontinuation of GSK3532795. As part of the effort to further map the maturation inhibitor pharmacophore and provide additional structural options, the evaluation of alternates to the C-3 phenyl substituent in this chemotype was pursued. A cyclohexene carboxylic acid provided exceptional inhibition of wild-type, V370A and ΔV370 mutant viruses in addition to a suitable PK profile following oral dosing to rats. In addition, a novel spiro[3.3]hept-5-ene was designed to extend the carboxylic acid further from the triterpenoid core while reducing side chain flexibility compared to the other alkyl substituents. This modification was shown to closely emulate the C-3 benzoic acid moiety of GSK3532795 from both a potency and PK perspective, providing a non-traditional, sp3-rich bioisostere of benzene. Herein, we detail additional modifications to the C-3 position of the triterpenoid core that offer effective replacements for the benzoic acid of GSK3532795 and capture the interplay between these new C-3 elements and C-17 modifications that contribute to enhanced polymorph coverage.
Assuntos
Fármacos Anti-HIV/farmacologia , Ácido Benzoico/farmacologia , Desenho de Fármacos , HIV-1/efeitos dos fármacos , Triterpenos/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Ácido Benzoico/síntese química , Ácido Benzoico/química , Relação Dose-Resposta a Droga , Farmacorresistência Viral/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Triterpenos/síntese química , Triterpenos/químicaRESUMO
The design and synthesis of a series of C28 amine-based betulinic acid derivatives as HIV-1 maturation inhibitors is described. This series represents a continuation of efforts following on from previous studies of C-3 benzoic acid-substituted betulinic acid derivatives as HIV-1 maturation inhibitors (MIs) that were explored in the context of C-28 amide substituents. Compared to the C-28 amide series, the C-28 amine derivatives exhibited further improvements in HIV-1 inhibitory activity toward polymorphisms in the Gag polyprotein as well as improved activity in the presence of human serum. However, plasma exposure of basic amines following oral administration to rats was generally low, leading to a focus on moderating the basicity of the amine moiety distal from the triterpene core. The thiomorpholine dioxide (TMD) 20 emerged from this study as a compound with the optimal antiviral activity and an acceptable pharmacokinetic profile in the C-28 amine series. Compared to the C-28 amide 3, 20 offers a 2- to 4-fold improvement in potency towards the screening viruses, exhibits low shifts in the EC50 values toward the V370A and ΔV370 viruses in the presence of human serum or human serum albumin, and demonstrates improved potency towards the polymorphic T371A and V362I virus variants.
Assuntos
Aminas/farmacologia , Fármacos Anti-HIV/farmacologia , Desenho de Fármacos , HIV-1/efeitos dos fármacos , Triterpenos/farmacologia , Aminas/química , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Conformação Molecular , Triterpenos Pentacíclicos , Relação Estrutura-Atividade , Triterpenos/síntese química , Triterpenos/química , Ácido BetulínicoRESUMO
C-terminal Src kinase (Csk) is one of the critical negative regulators of the Src family of kinases. The Src family of kinases are nonreceptor tyrosine kinases that regulate inflammation, cell proliferation, motility, and adhesion. To investigate potential histologic lesions associated with systemic loss of Csk gene activity in adult mice, conditional Csk-knockout mice were examined. Cre-mediated systemic excision of Csk induced by tamoxifen treatment resulted in multiorgan inflammation. Specifically, induction of Csk gene excision with three days of tamoxifen treatment resulted in greater than 90% gene excision. Strikingly, these mice developed enteritis that ranged from minimal and suppurative to severe, fibrinonecrosuppurative and hemorrhagic. Other inflammatory lesions included suppurative pneumonia, gastritis, and myocarditis, and increased numbers of inflammatory cells within the hepatic parenchyma. When tamoxifen treatment was reduced from three days to one day in an effort to lower the level of Csk gene excision and limit lesion development, the mice developed severe suppurative to pyogranulomatous pneumonia and minimal to mild suppurative enteritis. Lesions observed secondary to Csk gene excision suggest important roles for Csk in downregulating the proinflammatory activity of the Src family of kinases and limiting neutrophil-mediated inflammation.
Assuntos
Inflamação/veterinária , Camundongos Knockout/metabolismo , Supuração/veterinária , Quinases da Família src/metabolismo , Animais , Southern Blotting , Proteína Tirosina Quinase CSK , Feminino , Expressão Gênica , Inflamação/metabolismo , Inflamação/patologia , Masculino , Supuração/metabolismo , Supuração/patologiaRESUMO
The synthesis, structure-activity relationship (SAR) data, and further optimization of the metabolic stability and pharmacokinetic (PK) properties for a previously disclosed class of cyclopropyl-fused indolobenzazepine HCV NS5B polymerase inhibitors are described. These efforts led to the discovery of BMS-961955 as a viable contingency backup to beclabuvir which was recently approved in Japan for the treatment of HCV as part of a three drug, single pill combination marketed as XimencyTM.
Assuntos
Antivirais/química , Antivirais/farmacologia , Benzazepinas/química , Benzazepinas/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Antivirais/farmacocinética , Benzazepinas/farmacocinética , Cães , Haplorrinos , Hepacivirus/enzimologia , Hepacivirus/metabolismo , Hepatite C/virologia , Humanos , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Ratos , Proteínas não Estruturais Virais/metabolismoRESUMO
BMS-955176 is a second-generation human immunodeficiency virus type 1 (HIV-1) maturation inhibitor (MI). A first-generation MI, bevirimat, showed clinical efficacy in early-phase studies, but â¼50% of subjects had viruses with reduced susceptibility associated with naturally occurring polymorphisms in Gag near the site of MI action. MI potency was optimized using a panel of engineered reporter viruses containing site-directed polymorphic changes in Gag that reduce susceptibility to bevirimat (including V362I, V370A/M/Δ, and T371A/Δ), leading incrementally to the identification of BMS-955176. BMS-955176 exhibits potent activity (50% effective concentration [EC50], 3.9 ± 3.4 nM [mean ± standard deviation]) toward a library (n = 87) of gag/pr recombinant viruses representing 96.5% of subtype B polymorphic Gag diversity near the CA/SP1 cleavage site. BMS-955176 exhibited a median EC50 of 21 nM toward a library of subtype B clinical isolates assayed in peripheral blood mononuclear cells (PBMCs). Potent activity was maintained against a panel of reverse transcriptase, protease, and integrase inhibitor-resistant viruses, with EC50s similar to those for the wild-type virus. A 5.4-fold reduction in EC50 occurred in the presence of 40% human serum plus 27 mg/ml of human serum albumin (HSA), which corresponded well to an in vitro measurement of 86% human serum binding. Time-of-addition and pseudotype reporter virus studies confirm a mechanism of action for the compound that occurs late in the virus replication cycle. BMS-955176 inhibits HIV-1 protease cleavage at the CA/SP1 junction within Gag in virus-like particles (VLPs) and in HIV-1-infected cells, and it binds reversibly and with high affinity to assembled Gag in purified HIV-1 VLPs. Finally, in vitro combination studies showed no antagonistic interactions with representative antiretrovirals (ARVs) of other mechanistic classes. In conclusion, BMS-955176 is a second-generation MI with potent in vitro anti-HIV-1 activity and a greatly improved preclinical profile compared to that of bevirimat.
Assuntos
Fármacos Anti-HIV/farmacologia , HIV-1/efeitos dos fármacos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Farmacorresistência Viral/genética , HIV-1/metabolismo , Humanos , Succinatos/farmacologia , Triterpenos/farmacologia , Replicação Viral/efeitos dos fármacosRESUMO
Herein, we describe the synthesis, antiviral structure-activity relationships (SAR), metabolic stability, and pharmacokinetic (PK) properties for a series of cyclopropylindolobenzazepine acylsulfonamide HCV NS5B polymerase inhibitors. Optimization of SAR, metabolic stability and PK led to the identification of compound 19 which was advanced into pre-IND enabling toxicology studies.
Assuntos
Antivirais/química , Hepacivirus/enzimologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Sulfonamidas/química , Administração Oral , Animais , Antivirais/síntese química , Antivirais/farmacocinética , Benzazepinas/química , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Humanos , Macaca fascicularis , Microssomos Hepáticos/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Ratos , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/farmacocinéticaRESUMO
Schizophrenia is a serious illness that affects millions of patients and has been associated with N-methyl-d-aspartate receptor (NMDAR) hypofunction. It has been demonstrated that activation of metabotropic glutamate receptor 5 (mGluR5) enhances NMDA receptor function, suggesting the potential utility of mGluR5 positive allosteric modulators (PAMs) in the treatment of schizophrenia. Herein we describe the optimization of an mGluR5 PAM by replacement of a phenyl with aliphatic heterocycles and carbocycles as a strategy to reduce bioactivation in a biaryl acetylene chemotype. Replacement with a difluorocyclobutane followed by further optimization culminated in the identification of compound 32, a low fold shift PAM with reduced bioactivation potential. Compound 32 demonstrated favorable brain uptake and robust efficacy in mouse novel object recognition (NOR) at low doses.
Assuntos
Oxazolidinonas/farmacologia , Piridinas/farmacologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Humanos , Camundongos , Estrutura Molecular , Oxazolidinonas/síntese química , Oxazolidinonas/química , Piridinas/síntese química , Piridinas/química , Ratos , Relação Estrutura-AtividadeRESUMO
We have recently reported on the discovery of a C-3 benzoic acid (1) as a suitable replacement for the dimethyl succinate side chain of bevirimat (2), an HIV-1 maturation inhibitor that reached Phase II clinical trials before being discontinued. Recent SAR studies aimed at improving the antiviral properties of 2 have shown that the benzoic acid moiety conferred topographical constraint to the pharmacophore and was associated with a lower shift in potency in the presence of human serum albumin. In this manuscript, we describe efforts to improve the polymorphic coverage of the C-3 benzoic acid chemotype through modifications at the C-28 position of the triterpenoid core. The dimethylaminoethyl amides 17 and 23 delivered improved potency toward bevirimat-resistant viruses while increasing C24 in rat oral PK studies.
Assuntos
Amidas/farmacologia , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Benzoatos/farmacologia , HIV/efeitos dos fármacos , HIV/crescimento & desenvolvimento , Triterpenos/farmacologia , Administração Oral , Amidas/administração & dosagem , Amidas/química , Animais , Fármacos Anti-HIV/administração & dosagem , Benzoatos/administração & dosagem , Benzoatos/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , Triterpenos/administração & dosagem , Triterpenos/químicaRESUMO
The HIV-1 maturation inhibitor (MI) VH3739937 (VH-937) inhibits cleavage between capsid and spacer peptide 1 and exhibits an oral half-life in humans compatible with once-weekly dosing. Here, the antiviral properties of VH-937 are described. VH-937 exhibited potent antiviral activity against all HIV-1 laboratory strains, clinical isolates, and recombinant viruses examined, with half-maximal effective concentration (EC50) values ≤ 5.0 nM. In multiple-cycle assays, viruses less susceptible to other MIs, including A364V, were inhibited at EC50 values ≤ 8.0 nM and maximal percent inhibition (MPI) values ≥ 92%. However, VH-937 was less potent against A364V in single-cycle assays (EC50, 32.0 nM; MPI, 57%) and A364V emerged in one of four resistance selection cultures. Other substitutions were selected by VH-937, although re-engineered viruses with these sequences were non-functional in multiple-cycle assays. Measured dissociation rates from wild-type and A364V-containing VLPs help explain resistance to the A364V mutation. Overall, the in vitro antiviral activity of VH-937 supports its continued development as a treatment for HIV-1.
Assuntos
Fármacos Anti-HIV , HIV-1 , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , Fármacos Anti-HIV/farmacologia , Infecções por HIV/virologia , Infecções por HIV/tratamento farmacológico , Replicação Viral/efeitos dos fármacos , Farmacorresistência Viral , Avaliação Pré-Clínica de Medicamentos , Células HEK293RESUMO
Long-acting (LA) human immunodeficiency virus-1 (HIV-1) antiretroviral therapy characterized by a ≥1 month dosing interval offers significant advantages over daily oral therapy. However, the criteria for compounds that enter clinical development are high. Exceptional potency and low plasma clearance are required to meet dose size requirements; excellent chemical stability and/or crystalline form stability is required to meet formulation requirements, and new antivirals in HIV-1 therapy need to be largely free of side effects and drug-drug interactions. In view of these challenges, the discovery that capsid inhibitors comprising a quinazolinone core tolerate a wide range of structural modifications while maintaining picomolar potency against HIV-1 infection in vitro, are assembled efficiently in a multi-component reaction, and can be isolated in a stereochemically pure form is reported herein. The detailed characterization of a prototypical compound, GSK878, is presented, including an X-ray co-crystal structure and subcutaneous and intramuscular pharmacokinetic data in rats and dogs.
Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Humanos , Ratos , Animais , Cães , Capsídeo , Proteínas do Capsídeo , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico , Fármacos Anti-HIV/farmacocinética , Infecções por HIV/tratamento farmacológicoRESUMO
An investigation of the structure-activity relationships of a series of HIV-1 maturation inhibitors (MIs) based on GSK3640254 (4) was conducted by incorporating novel C-17 amine substituents to reduce the overall basicity of the resultant analogues. We found that replacement of the distal amine on the C-17 sidechain present in 4 with a tertiary alcohol in combination with either a heterocyclic ring system or a cyclohexyl ring substituted with polar groups provided potent wild-type HIV-1 MIs that also retained excellent potency against a T332S/V362I/prR41G variant, a laboratory strain that served as a surrogate to assess HIV-1 polymorphic virus coverage. Compound 26 exhibited broad-spectrum HIV-1 activity against an expanded panel of clinically relevant Gag polymorphic viruses and had the most desirable overall profile in this series of compounds. In pharmacokinetic studies, 26 had low clearance and exhibited 24 and 31% oral bioavailability in rats and dogs, respectively.
Assuntos
HIV-1 , Animais , Cães , Ratos , Aminas/farmacologia , Relação Estrutura-AtividadeRESUMO
Allosteric HIV-1 integrase inhibitors (ALLINIs) have garnered special interest because of their novel mechanism of action: they inhibit HIV-1 replication by promoting aberrant integrase multimerization, leading to the production of replication-deficient viral particles. The binding site of ALLINIs is in a well-defined pocket formed at the interface of two integrase monomers that is characterized by conserved residues along with two polymorphic amino acids at residues 124 and 125. The design, synthesis, and optimization of pyridine-based allosteric integrase inhibitors are reported here. Optimization was conducted with a specific emphasis on the inhibition of the 124/125 polymorphs such that the designed compounds showed excellent potency in vitro against majority of the 124/125 variants. In vivo profiling of promising preclinical lead 29 showed that it exhibited a good pharmacokinetic (PK) profile in preclinical species, which resulted in a low predicted human efficacious dose. However, findings in rat toxicology studies precluded further development of 29.
Assuntos
Inibidores de Integrase de HIV , Integrase de HIV , HIV-1 , Regulação Alostérica , Animais , Integrase de HIV/metabolismo , Inibidores de Integrase de HIV/química , Inibidores de Integrase de HIV/farmacologia , HIV-1/fisiologia , RatosRESUMO
GSK3640254 is an HIV-1 maturation inhibitor (MI) that exhibits significantly improved antiviral activity toward a range of clinically relevant polymorphic variants with reduced sensitivity toward the second-generation MI GSK3532795 (BMS-955176). The key structural difference between GSK3640254 and its predecessor is the replacement of the para-substituted benzoic acid moiety attached at the C-3 position of the triterpenoid core with a cyclohex-3-ene-1-carboxylic acid substituted with a CH2F moiety at the carbon atom α- to the pharmacophoric carboxylic acid. This structural element provided a new vector with which to explore structure-activity relationships (SARs) and led to compounds with improved polymorphic coverage while preserving pharmacokinetic (PK) properties. The approach to the design of GSK3640254, the development of a synthetic route and its preclinical profile are discussed. GSK3640254 is currently in phase IIb clinical trials after demonstrating a dose-related reduction in HIV-1 viral load over 7-10 days of dosing to HIV-1-infected subjects.
Assuntos
Fármacos Anti-HIV , HIV-1 , Triterpenos , Humanos , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Ácido Benzoico/química , Carbono , Triterpenos/química , Triterpenos/farmacologia , Triterpenos/uso terapêuticoRESUMO
Allosteric HIV-1 integrase inhibitors (ALLINIs) have been of interest recently because of their novel mechanism of action. Strategic modifications to the C5 moiety of a class of 4-(4,4-dimethylpiperidinyl)-2,6-dimethylpyridinyl ALLINIs led to the identification of a tetrahydroisoquinoline heterocycle as a suitable spacer element to project the distal hydrophobic aryl ring. Subsequent optimization of the aryl substitutions identified 12 as an ALLINI with single-digit nanomolar inhibitory potency and low clearance across preclinical species. In preclinical toxicology studies with 12 in rats, lipid hepatocellular vacuolation was observed. Removal of the C6 methyl group resulted in GSK3839919 (22), which exhibited a reduced incidence and severity of lipid vacuolation in both in vitro assays and in vivo studies while maintaining the potency and pharmacokinetic (PK) properties of the prototype. The virology, PK, and toxicology profiles of 22 are discussed.
RESUMO
Drug-induced phospholipidosis (PLD) is an adaptive histologic alteration that is seen with various marketed drugs and often encountered during drug development. Various in silico and in vitro cell-based methods have been developed to predict the PLD-inducing potential of compounds. These methods rely on the inherent physicochemical properties of the molecule and, as such, tend to overpredict compounds as PLD inducers. Recognizing that the distribution of compounds into tissues or tissue accumulation is likely a key factor in PLD induction, in addition to key physicochemical properties, we developed a model to predict PLD in vivo using the measures of basicity (pK(a)), lipophilicity (ClogP), and volume of distribution (V(d)). Using sets of PLD inducers and noninducers, we demonstrate improved concordance with this method. Furthermore, we propose a screening paradigm that includes a combination of various methods to predict the in vivo PLD-inducing potential of compounds, which may be especially useful in lead identification and optimization processes in drug discovery.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Lipidoses/induzido quimicamente , Algoritmos , Animais , Humanos , Lipidoses/fisiopatologia , Modelos Moleculares , Modelos Estatísticos , Fosfolipídeos/metabolismo , RatosRESUMO
The strategy and tactics subtending the discovery and development of the second generation HIV-1 maturation inhibitor GSK-3532795/BMS-955176, a compound that exhibits a broader spectrum of antiviral effect in vitro and in clinical studies than the prototypical maturation inhibitor bevirimat, are described.
RESUMO
INTRODUCTION: Low intrinsic solubility leading to poor oral bioavailability is a common challenge in drug discovery that can often be overcome by formulation strategies, however, it remains a potential limitation that can pose challenges for early risk assessment and represent a significant obstacle to drug development. We identified a selective inhibitor (BMS-986126) of the IL-1 receptor-associated kinase 4 (IRAK4) with favorable properties as a lead candidate, but with unusually low intrinsic solubility of <1⯵g/mL. METHODS: Conventional histopathology identified the issue of crystal formation in vivo. Subsequent investigative work included confocal Raman micro-spectroscopy, MALDI-MS, polarized light microscopy of fresh wet-mount tissue scrapings and transmission electron microscopy. RESULTS: BMS-986126 was advanced into a 2-week toxicology study in rats. The main finding in this study was minimal granulomatous inflammation in the duodenum, associated with the presence of birefringent crystals at the highest dosage of 100â¯mg/kg/day. Considering the safety margin, and the single location of the lesion, BMS-986126 was further progressed into IND-enabling toxicology studies where tolerability deteriorated with increasing dosing duration. Birefringent crystals and granulomatous inflammation were detected in multiple organs at dosages ≥20â¯mg/kg/day. Raman spectroscopy confirmed the identity of the crystals as BMS-986126. Therefore, follow up investigations were conducted to further characterize drug crystallization and to evaluate detection methods for their potential to reliably detect in vivo crystallization early. DISCUSSION: The purpose of our efforts was to identify critical factors influencing in vivo drug crystallization and to provide a preliminary assessment (based on one compound) which method would be best suited for identifying crystals. Results indicated a combination of methods was required to provide a complete assessment of drug crystallization and that a simple technique, scraping of freshly collected tissue followed by evaluation under polarizing light was suitable for detecting crystals. However, dosing for 2â¯weeks was required for crystals to grow to a clearly detectable size.
Assuntos
Cristalização , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Pirazóis/química , Piridinas/química , Animais , Disponibilidade Biológica , Descoberta de Drogas , Duodeno/patologia , Feminino , Quinases Associadas a Receptores de Interleucina-1/química , Macrófagos Alveolares/efeitos dos fármacos , Masculino , Cultura Primária de Células , Pirazóis/administração & dosagem , Pirazóis/farmacocinética , Piridinas/administração & dosagem , Piridinas/farmacocinética , Ratos , Ratos Sprague-Dawley , Risco , Solubilidade , Análise Espectral RamanRESUMO
GSK3532795, formerly known as BMS-955176 (1), is a potent, orally active, second-generation HIV-1 maturation inhibitor (MI) that advanced through phase IIb clinical trials. The careful design, selection, and evaluation of substituents appended to the C-3 and C-17 positions of the natural product betulinic acid (3) was critical in attaining a molecule with the desired virological and pharmacokinetic profile. Herein, we highlight the key insights made in the discovery program and detail the evolution of the structure-activity relationships (SARs) that led to the design of the specific C-17 amine moiety in 1. These modifications ultimately enabled the discovery of 1 as a second-generation MI that combines broad coverage of polymorphic viruses (EC50 <15 nM toward a panel of common polymorphisms representative of 96.5% HIV-1 subtype B virus) with a favorable pharmacokinetic profile in preclinical species.
Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Crisenos/química , Morfolinas/química , Relação Estrutura-Atividade , Triterpenos/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Administração Oral , Animais , Fármacos Anti-HIV/farmacocinética , Ácido Benzoico/química , Disponibilidade Biológica , Técnicas de Química Sintética , Crisenos/farmacologia , Cães , Desenho de Fármacos , Estabilidade de Medicamentos , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , Macaca fascicularis , Masculino , Camundongos Endogâmicos , Camundongos Knockout , Microssomos Hepáticos/efeitos dos fármacos , Morfolinas/farmacologia , Polimorfismo Genético , Ratos Sprague-Dawley , Triterpenos/farmacologiaRESUMO
Iterative structure-activity analyses in a class of highly functionalized furo[2,3-b]pyridines led to the identification of the second generation pan-genotypic hepatitis C virus NS5B polymerase primer grip inhibitor BMT-052 (14), a potential clinical candidate. The key challenge of poor metabolic stability was overcome by strategic incorporation of deuterium at potential metabolic soft spots. The preclinical profile and status of BMT-052 (14) is described.