RESUMO
In this work, we demonstrate a 1200-W average power all polarization-maintaining (PM) fiber ultrafast laser system operating at 1.0â µm. In accordance with the numerical modeling, the PM fiber laser system is designed and it delivers linearly-polarized femtosecond pulses at a 1.39-GHz fundamental repetition rate, with a maximum output power of 1214 W - to the best of our knowledge, the highest average power from all PM fiber ultrafast laser at 1.0â µm to date. The pulse width can be compressed to â¼800 fs with a beam quality of M2 < 1.1. This kilowatt-class all PM fiber laser system is expected to open new potential for high energy pulse generation through temporal coherent combination and laser ablation using GHz burst fs laser.
RESUMO
In this work, we report on the vector and scalar soliton dynamics that result from inevitable fiber birefringence in an 8-mm Er3+/Yb3+ fiber based Fabry-Férot (FP) laser that has a free spectral range of up to 12.5 GHz. The generation of polarization-evolving vector solitons can largely degrade the performance of application systems, and the underlying mechanisms and manipulation technologies are yet to be explored. To realize the transition from vector to scalar (linearly polarized) state, we here incorporate the polarization selection effect (PSE) in the simulation model and the numerical results verify that only a small amount of PSE is sufficient for manipulating the soliton dynamics. It also reveals that, prominent polarization-dependent intensity discrimination can be acquired via geometry-induced oblique incidence to the Bragg mirror of the semiconductor saturable absorber mirror (SESAM), and we obtain switchable operating states by tilting the SESAM in the experiments. These efforts create a feasible method to manipulate high-repetition-rate pulse and may shed light on understanding the dissipative soliton dynamics in ultrafast fiber FP lasers.