Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 64(4): 1317-29, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27396550

RESUMO

UNLABELLED: Liver kinase B1 (LKB1) and its downstream effector AMP-activated protein kinase (AMPK) play critical roles in polarity establishment by regulating membrane trafficking and energy metabolism. In collagen sandwich-cultured hepatocytes, loss of LKB1 or AMPK impaired apical ABCB11 (Bsep) trafficking and bile canalicular formation. In the present study, we used liver-specific (albumin-Cre) LKB1 knockout mice (LKB1(-/-) ) to investigate the role of LKB1 in the maintenance of functional tight junction (TJ) in vivo. Transmission electron microscopy examination revealed that hepatocyte apical membrane with microvilli substantially extended into the basolateral domain of LKB1(-/-) livers. Immunofluorescence studies revealed that loss of LKB1 led to longer and wider canalicular structures correlating with mislocalization of the junctional protein, cingulin. To test junctional function, we used intravital microscopy to quantify the transport kinetics of 6-carboxyfluorescein diacetate (6-CFDA), which is processed in hepatocytes into its fluorescent derivative 6-carboxyfluorescein (6-CF) and secreted into the canaliculi. In LKB1(-/-) mice, 6-CF remained largely in hepatocytes, canalicular secretion was delayed, and 6-CF appeared in the blood. To test whether 6-CF was transported through permeable TJ, we intravenously injected low molecular weight (3 kDa) dextran in combination with 6-CFDA. In wild-type mice, 3 kDa dextran remained in the vasculature, whereas it rapidly appeared in the abnormal bile canaliculi in LKB1(-/-) mice, confirming that junctional disruption resulted in paracellular exchange between the blood stream and the bile canaliculus. CONCLUSION: LKB1 plays a critical role in regulating the maintenance of TJ and paracellular permeability, which may explain how various drugs, chemicals, and metabolic states that inhibit the LKB1/AMPK pathway result in cholestasis. (Hepatology 2016;64:1317-1329).


Assuntos
Hepatócitos/fisiologia , Hepatócitos/ultraestrutura , Proteínas Serina-Treonina Quinases/fisiologia , Junções Íntimas/fisiologia , Junções Íntimas/ultraestrutura , Proteínas Quinases Ativadas por AMP , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout
2.
iScience ; 11: 440-449, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30661001

RESUMO

Mitochondria are dynamic organelles undergoing fission, fusion, and translocation. These processes have been studied in cultured cells; however, little is known about their regulation in cells within tissues in vivo. We applied four-dimensional intravital microscopy to address this in secretory cells of the salivary gland. We found that mitochondria are organized in two populations: one juxtaposed to the basolateral plasma membrane and the other dispersed in the cytosol. Under basal conditions, central mitochondria exhibit microtubule-dependent motility and low fusion rate, whereas basolateral mitochondria are static and display high fusion rate. Increasing cellular energy demand by ß-adrenergic stimulation of regulated exocytosis selectively enhanced motility and fusion of central mitochondria. Inhibition of microtubule polymerization led to inhibition of central mitochondrial motility and fusion and a marked reduction in exocytosis. This study reveals a conserved heterogeneity in mitochondrial positioning and dynamics in exocrine tissues that may have fundamental implications in organ pathophysiology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA