Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 16(40): 9230-9241, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32926045

RESUMO

Unlike traditional nematic liquid crystals, which adopt ordered equilibrium configurations compatible with the topological constraints imposed by the boundaries, active nematics are intrinsically disordered because of their self-sustained internal flows. Controlling the flow patterns of active nematics remains a limiting step towards their use as functional materials. Here we show that confining a tubulin-kinesin active nematic to a network of connected annular microfluidic channels enables controlled directional flows and autonomous transport. In single annular channels, for narrow widths, the typically chaotic streams transform into well-defined circulating flows, whose direction or handedness can be controlled by introducing asymmetric corrugations on the channel walls. The dynamics is altered when two or three annular channels are interconnected. These more complex topologies lead to scenarios of synchronization, anti-correlation, and frustration of the active flows, and to the stabilisation of high topological singularities in both the flow field and the orientational field of the material. Controlling textures and flows in these microfluidic platforms opens unexplored perspectives towards their application in biotechnology and materials science.

2.
Biomaterials ; 295: 122033, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36764194

RESUMO

Human pluripotent stem cells (hPSCs) have emerged as the most promising cellular source for cell therapies. To overcome the scale-up limitations of classical 2D culture systems, suspension cultures have been developed to meet the need for large-scale culture in regenerative medicine. Despite constant improvements, current protocols that use microcarriers or generate cell aggregates only achieve moderate amplification performance. Here, guided by reports showing that hPSCs can self-organize in vitro into cysts reminiscent of the epiblast stage in embryo development, we developed a physio-mimetic approach for hPSC culture. We engineered stem cell niche microenvironments inside microfluidics-assisted core-shell microcapsules. We demonstrate that lumenized three-dimensional colonies significantly improve viability and expansion rates while maintaining pluripotency compared to standard hPSC culture platforms such as 2D cultures, microcarriers, and aggregates. By further tuning capsule size and culture conditions, we scale up this method to industrial-scale stirred tank bioreactors and achieve an unprecedented hPSC amplification rate of 277-fold in 6.5 days. In brief, our findings indicate that our 3D culture system offers a suitable strategy both for basic stem cell biology experiments and for clinical applications.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Pluripotentes , Humanos , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células Cultivadas , Reatores Biológicos
3.
Nat Commun ; 13(1): 6675, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335213

RESUMO

The role of boundary layers in conventional liquid crystals is commonly related to the mesogen anchoring on confining walls. In the classical view, anchoring enslaves the orientational field of the passive material under equilibrium conditions. In this work, we show that an active nematic can develop active boundary layers that topologically polarize the confining walls. We find that negatively-charged defects accumulate in the boundary layer, regardless of the wall curvature, and they influence the overall dynamics of the system to the point of fully controlling the behavior of the active nematic in situations of strong confinement. Further, we show that wall defects exhibit behaviors that are essentially different from those of their bulk counterparts, such as high motility or the ability to recombine with another defect of like-sign topological charge. These exotic behaviors result from a change of symmetry induced by the wall in the director field around the defect. Finally, we suggest that the collective dynamics of wall defects might be described in terms of a model equation for one-dimensional spatio-temporal chaos.

4.
Sci Adv ; 4(4): eaao1470, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29740605

RESUMO

The formation of emulsions from multiple immiscible fluids is governed by classical concepts such as surface tension, differential chemical affinity and viscosity, and the action of surface-active agents. Much less is known about emulsification when one of the components is active and thus inherently not constrained by the laws of thermodynamic equilibrium. We demonstrate one such realization consisting in the encapsulation of an active liquid crystal (LC)-like gel, based on microtubules and kinesin molecular motors, into a thermotropic LC. These active nematic emulsions exhibit a variety of dynamic behaviors that arise from the cross-talk between topological defects separately residing in the active and passive components. Using numerical simulations, we show a feedback mechanism by which active flows continuously drive the passive defects that, in response, resolve the otherwise degenerated trajectories of the active defects. Our experiments show that the choice of surfactant, which stabilizes the active/passive interface, allows tuning the regularity of the self-sustained dynamic events. The hybrid active-passive system demonstrated here provides new perspectives for dynamic self-assembly driven by an active material but regulated by the equilibrium properties of the passive component.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA