Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 19(1): 487, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925311

RESUMO

BACKGROUND: The rat genome was sequenced in 2004 with the aim to improve human health altered by disease and environmental influences through gene discovery and animal model validation. Here, we report development and testing of a probe set for whole exome sequencing (WES) to detect sequence variants in exons and UTRs of the rat genome. Using an in-silico approach, we designed probes targeting the rat exome and compared captured mutations in cancer-related genes from four chemically induced rat tumor cell lines (C6, FAT7, DSL-6A/C1, NBTII) to validated cancer genes in the human database, Catalogue of Somatic Mutations in Cancer (COSMIC) as well as normal rat DNA. Paired, fresh frozen (FF) and formalin-fixed, paraffin-embedded (FFPE) liver tissue from naive rats were sequenced to confirm known dbSNP variants and identify any additional variants. RESULTS: Informatics analysis of available gene annotation from rat RGSC6.0/rn6 RefSeq and Ensembl transcripts provided 223,636 unique exons representing a total of 26,365 unique genes and untranslated regions. Using this annotation and the Rn6 reference genome, an in-silico probe design generated 826,878 probe sequences of which 94.2% were uniquely aligned to the rat genome without mismatches. Further informatics analysis revealed 25,249 genes (95.8%) covered by at least one probe and 23,603 genes (93.5%) had every exon covered by one or more probes. We report high performance metrics from exome sequencing of our probe set and Sanger validation of annotated, highly relevant, cancer gene mutations as cataloged in the human COSMIC database, in addition to several exonic variants in cancer-related genes. CONCLUSIONS: An in-silico probe set was designed to enrich the rat exome from isolated DNA. The platform was tested on rat tumor cell lines and normal FF and FFPE liver tissue. The method effectively captured target exome regions in the test DNA samples with exceptional sensitivity and specificity to obtain reliable sequencing data representing variants that are likely chemically induced somatic mutations. Genomic discovery conducted by means of high throughput WES queries should benefit investigators in discovering rat genomic variants in disease etiology and in furthering human translational research.


Assuntos
Sequenciamento do Exoma/métodos , Exoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Animais , Inibidor p16 de Quinase Dependente de Ciclina/genética , Humanos , Camundongos , Ratos , Análise de Sequência de DNA/métodos , Fixação de Tecidos
2.
Symbiosis ; 58(1-3): 201-207, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23482460

RESUMO

Wolbachia endosymbionts are widespread in arthropods and are generally considered reproductive parasites, inducing various phenotypes including cytoplasmic incompatibility, parthenogenesis, feminization and male killing, which serve to promote their spread through populations. In contrast, Wolbachia infecting filarial nematodes that cause human diseases, including elephantiasis and river blindness, are obligate mutualists. DNA purification methods for efficient genomic sequencing of these unculturable bacteria have proven difficult using a variety of techniques. To efficiently capture endosymbiont DNA for studies that examine the biology of symbiosis, we devised a parallel strategy to an earlier array-based method by creating a set of SureSelect™ (Agilent) 120-mer target enrichment RNA oligonucleotides ("baits") for solution hybrid selection. These were designed from Wolbachia complete and partial genome sequences in GenBank and were tiled across each genomic sequence with 60 bp overlap. Baits were filtered for homology against host genomes containing Wolbachia using BLAT and sequences with significant host homology were removed from the bait pool. Filarial parasite Brugia malayi DNA was used as a test case, as the complete sequence of both Wolbachia and its host are known. DNA eluted from capture was size selected and sequencing samples were prepared using the NEBNext® Sample Preparation Kit. One-third of a 50 nt paired-end sequencing lane on the HiSeq™ 2000 (Illumina) yielded 53 million reads and the entirety of the Wolbachia genome was captured. We then used the baits to isolate more than 97.1 % of the genome of a distantly related Wolbachia strain from the crustacean Armadillidium vulgare, demonstrating that the method can be used to enrich target DNA from unculturable microbes over large evolutionary distances.

3.
Discov Med ; 14(79): 389-99, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23272691

RESUMO

Discovering causative genetic variants in individual cases of suspected mitochondrial disease requires interrogation of both the mitochondrial (mtDNA) and nuclear genomes. Whole-exome sequencing can support simultaneous dual-genome analysis, although currently available capture kits do not target the mtDNA genome and provide insufficient capture for some nuclear-encoded mitochondrial genes. To optimize interrogation of nuclear and mtDNA genes relevant to mitochondrial biology and disease, a custom SureSelect "Mito-Plus" whole-exome library was formulated by blending RNA "baits" from three separate designs: (A) Agilent Technologies SureSelectXT 50 Mb All Exon PLUS Targeted Enrichment Kit, (B) 16-gene nuclear panel targeting sequences for known MitoCarta proteins not included in the 50 Mb All Exon design, and (C) sequences targeting the entire mtDNA genome. The final custom formulations consisted of a 1:1 ratio of nuclear baits to which a 1 to 1,000-fold diluted ratio of mtDNA genome baits were blended. Patient sample capture libraries were paired-end sequenced on an Illumina HiSeq 2000 system using v3.0 SBS chemistry. mtDNA genome coverage varied depending on the mtDNA:nuclear blend ratio, where a 1:100 ratio provided optimal dual-genome coverage with 10X coverage for over 97.5% of all targeted nuclear regions and 1,000X coverage for 99.8% of the mtDNA genome. mtDNA mutations were reliably detected to at least an 8% heteroplasmy level, as discriminated both from sequencing errors and potential contamination from nuclear mtDNA transcripts (Numts). The "1:100 Mito-Plus Whole-Exome" Agilent capture kit offers an optimized tool for whole-exome analysis of nuclear and mtDNA genes relevant to the diagnostic evaluation of mitochondrial disease.


Assuntos
Núcleo Celular/genética , Exoma/genética , Genoma Mitocondrial/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Análise de Sequência de DNA/métodos , Sondas de DNA/metabolismo , DNA Mitocondrial/genética , Humanos , Kit de Reagentes para Diagnóstico , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA