Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-28642099

RESUMO

Our understanding of reptilian cardiovascular development and regulation has increased substantially for two species the American alligator (Alligator mississippiensis) and the common snapping turtle (Chelydra serpentina) during the past two decades. However, what we know about cardiovascular maturation in many other species remains poorly understood or unknown. Embryonic sea turtles have been studied to understand the maturation of metabolic function, but these studies have not addressed the cardiovascular system. Although prior studies have been pivotal in characterizing development, and factors that influence it, the development of cardiovascular function, which supplies metabolic function, is unknown in sea turtles. During our investigation we focused on quantifying how cardiovascular morphological and functional parameters change, to provide basic knowledge of development in the olive ridley sea turtle (Lepidochelys olivacea). Embryonic mass, as well as mass of the heart, lungs, liver, kidney, and brain increased during turtle embryo development. Although heart rate was constant during this developmental period, arterial pressure approximately doubled. Further, while embryonic olive ridley sea turtles lacked cholinergic tone on heart rate, there was a pronounced beta adrenergic tone on heart rate that decreased in strength at 90% of incubation. This beta adrenergic tone may be partially originating from the sympathetic nervous system at 90% of incubation, with the majority originating from circulating catecholamines. Data indicates that olive ridley sea turtles share traits of embryonic functional cardiovascular maturation with the American alligator (Alligator mississippiensis) but not the common snapping turtle (Chelydra serpentina).


Assuntos
Sistema Cardiovascular/embriologia , Tartarugas/embriologia , Acetilcolina/administração & dosagem , Animais , Frequência Cardíaca , Hexametônio/administração & dosagem , Cloreto de Sódio/administração & dosagem
2.
Dev Biol ; 361(1): 156-66, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22008791

RESUMO

Bipotential gonads represent the structural framework from which alternative molecular sex determination networks have evolved. Maintenance of Sox9 expression in Sertoli cells is required for the structural and functional integrity of male gonads in mammals and probably in most amniote vertebrates. However, spatial and temporal patterns of Sox9 expression have diversified along evolution. Species with temperature sex determination are an interesting predictive model since one of two alternative developmental outcomes, either ovary or testis occurs under controlled laboratory conditions. In the sea turtle Lepidochelys olivacea, Sox9 is expressed in the medullary cords of bipotential gonads when incubated at both female- or male-promoting temperature (FT or MT). Sox9 is then turned off in presumptive ovaries, while it remains turned on in testes. In the current study, Sox9 was used as a marker of the medullary cell lineage to investigate if the medullary cords originate from mesothelial cells at the genital ridges where Sox9 is upregulated, or, if they derive from a cell population specified at an earlier developmental stage, which maintains Sox9 expression. Using immunofluorescence and in situ hybridization, embryos were analyzed prior to, during and after gonadal sex determination. A T-shaped domain (T-Dom) formed by cytokeratin (CK), N-cadherin (Ncad) and SOX9-expressing cells was found at the upper part of the hindgut dorsal mesentery. The arms of the T-Dom were extended to both sides towards the ventromedial mesonephric ridge before the thickening of the genital ridges, indicating that they contained gonadal epithelial cell precursors. Thereafter, expression of Sox9 was maintained in medullary cords while it was downregulated at the surface epithelium of bipotential gonads in both FT and MT. This result contrasts with observations in mammals and birds, in which Sox9 upregulation starts at a later stage in the inner cells underlying the Sox9-negative surface epithelium, suggesting that the establishment of a self-regulatory Sox9 loop required for Sertoli cell determination has evolved. The T-shaped domain at the upper part of the hindgut dorsal mesentery found in the current study may represent the earliest precursor of the genital ridges, previously unnoticed in amniote vertebrates.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Gônadas/citologia , Gônadas/embriologia , Fatores de Transcrição SOX9/metabolismo , Tartarugas/embriologia , Animais , Bromodesoxiuridina , Caderinas/metabolismo , Primers do DNA/genética , Feminino , Imunofluorescência , Gônadas/metabolismo , Hibridização In Situ , Queratinas/metabolismo , Masculino , Microscopia Eletrônica de Transmissão , Células de Sertoli/metabolismo , Células de Sertoli/fisiologia , Processos de Determinação Sexual/fisiologia , Fatores Sexuais , Temperatura
3.
Sex Dev ; 13(5-6): 286-296, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32396908

RESUMO

The sex of sea turtles is determined by temperature during egg incubation. Thus, climate change affects the sex ratio, exacerbating their vulnerability to extinction. Understanding spatiotemporal effects of temperature on sex determination at the gonadal level may facilitate the design of strategies to mitigate the effects of global warming. Here, we used qRT-PCR and immunofluorescence to analyze the spatiotemporal expression of Dmrt1 and Foxl2 in developing gonads of Lepidochelys olivacea incubated at male-producing temperature (MPT, 26°C) or female-producing temperature (FPT, 33°C). Although both transcription factors are expressed in bipotential gonads up to stage 25, the timing of their sexually dimorphic regulation differs. Whereas the dimorphic expression of Dmrt1 protein initiates at stage 24, Foxl2 protein was expressed specifically in females at stage 25. Interestingly, whereas Dmrt1 colocalizes with Sox9 in cell nuclei of primary medullary cords to form the testis cords, Foxl2 protein is first detected in Sox9-negative cells of primary medullary cords, prior to its substantial expression in the ovarian cortex. Thus, results suggest that the temperature-dependent regulation of sexual pathways is stochastic among the cells of primary medullary cords in undifferentiated bipotential gonads of the olive ridley.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA