RESUMO
Differentiation of most T lymphocytes occurs within the thymus and is characterized by variable expression of CD4/CD8 coreceptor molecules, increased surface density of T cell antigen receptor (TCR) alpha beta proteins, and decreased expression of glycan chains recognized by the galactose-specific lectin peanut agglutinin (PNA). Although appreciated for several decades that PNA agglutination is useful for the physical separation of immature and mature thymocyte sub-populations, the identity of specific PNA-binding glycoproteins expressed on immature thymocytes remains to be determined. In the current report, we studied the expression of PNA-specific glycans on immature and mature T cells and used lectin affinity chromatography and immunoprecipitation techniques to characterize PNA-binding glycoproteins on thymocytes. Our data demonstrate that PNA-specific glycans are localized on a relatively small subset of thymocyte surface proteins, several of which were specifically identified, including CD43, CD45, and suprisingly, CD8 molecules. CD8 alpha and CD8 alpha' proteins bound to PNA in the absence of CD8 beta expression showing that O-glycans on CD8 beta glycoproteins are not necessary for PNA binding and that glycosylation of CD8 alpha and CD8 alpha' proteins proceeds effectively in the absence of CD8 beta. Finally, we demonstrate that PNA binding of CD8 is developmentally regulated by sialic acid addition as CD8 proteins from mature T cells bound to PNA only after sialidase treatment. These studies identify CD8 as a PNA receptor molecule on immature thymocytes and show that PNA binding of CD8 on immature and mature T cells is developmentally regulated by sialic acid modification.
Assuntos
Antígenos CD8/química , Receptores Mitogênicos/metabolismo , Subpopulações de Linfócitos T/citologia , Timo/citologia , Animais , Diferenciação Celular , Cromatografia de Afinidade , Glicosilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Processamento de Proteína Pós-Traducional , Receptores Mitogênicos/química , Ácidos Siálicos/química , Subpopulações de Linfócitos T/imunologiaRESUMO
BACKGROUND AND PURPOSE: The relationship between osteopathic (COMLEX) and allopathic (USMLE) exam scores in not well described. We sought to describe the relationship between COMLEX and USMLE scores for osteopathic medical students who reported scores for both exams during application to internal medicine residency. METHODS: Cross sectional study of 588 matched USMLE/COMLEX Step 1 scores and 241 matched Step 2 scores. Means, standard deviations, and pairwise correlations for matched scores were calculated. RESULTS: USMLE and COMLEX paired scores resulted in a Pearson's correlation of 0.85 for Step 1 scores and 0.79 for Step 2 scores. COMLEX means were 560 and 561 for Level 1 and 2 and USMLE means were 209 and 215 for Step 1 and 2. CONCLUSIONS: USMLE and COMLEX scores are strongly related for internal medicine residency applicants who took both exams. Our sample performed approximately 0.8 standard deviation higher that the national COMLEX means on both Level 1 and 2 but at the national mean on USMLE Step 1 and 2. The variation in scoring methodology and potential differences between the study sample and individual applicant characteristics suggesteject caution should be taken in using a given COMLEX score as a predictor of performance on the USMLE.
Assuntos
Avaliação Educacional/métodos , Medicina Osteopática/educação , Estudantes de Medicina , Acreditação , Estudos Transversais , HumanosRESUMO
Although the emission of acetaldehyde from plants into the atmosphere following biotic and abiotic stresses may significantly impact air quality and climate, its metabolic origin(s) remains uncertain. We investigated the pathway(s) responsible for the production of acetaldehyde in plants by studying variations in the stable carbon isotope composition of acetaldehyde emitted during leaf anoxia or following mechanical stress. Under an anoxic environment, C3 leaves produced acetaldehyde during ethanolic fermentation with a similar carbon isotopic composition to C3 bulk biomass. In contrast, the initial emission burst following mechanical wounding was 5-12 per thousand more depleted in (13)C than emissions under anoxia. Due to a large kinetic isotope effect during pyruvate decarboxylation catalysed by pyruvate dehydrogenase, acetyl-CoA and its biosynthetic products such as fatty acids are also depleted in (13)C relative to bulk biomass. It is well known that leaf wounding stimulates the release of large quantities of fatty acids from membranes, as well as the accumulation of reactive oxygen species (ROS). We suggest that, following leaf wounding, acetaldehyde depleted in (13)C is produced from fatty acid peroxidation reactions initiated by the accumulation of ROS. However, a variety of other pathways could also explain our results, including the conversion of acetyl-CoA to acetaldehyde by the esterase activity of aldehyde dehydrogenase.
Assuntos
Acetaldeído/metabolismo , Isótopos de Carbono/análise , Hipóxia Celular/fisiologia , Folhas de Planta/metabolismo , Estresse Mecânico , Acetaldeído/análise , Populus/metabolismoRESUMO
The guinea pig is much like humans in the cells and mediators involved in immediate hypersensitivity reactions. However, the major anaphylactic antibody in this species is IgG1, not IgE. Recently, we have been successful in producing IgE antibody in guinea pigs. The current study examined whether guinea pig IgE antibody could mediate pulmonary smooth muscle contraction. IgE antibody to picryl and oxazolone determinants was induced by immunizing Hartley strain guinea pigs pretreated with cyclophosphamide. Hyperimmune serum from these animals was passed through a heavy chain-specific anti-IgG1 affinity column. The presence of IgE anti-hapten antibody in the filtrate fraction was verified by passive cutaneous anaphylaxis (PCA) testing with a 7-d period of local passive sensitization and by heat lability (56 degrees C X 4 h) of PCA activity. This IgE-rich fraction, and purified IgG1 anti-hapten antibody were transferred to normal guinea pigs. Both fractions sensitized trachea and pulmonary parenchyma for antigen-induced smooth muscle contraction. The IgG1-mediated antigen-induced contractile response was not affected by heat (56 degrees C X 4 h) and was inhibited in a dose-dependent fashion by IgG1 blocking antibody (anti-OA). The IgE-mediated antigen-induced contractile response was significantly decreased by heat and was not affected by the anti-OA blocking antibody even at a concentration of 100 mg/kg. Thus, two antigen-specific factors in guinea pig serum can mediate antigen-induced pulmonary smooth muscle contraction: IgG1 and IgE antibodies. Our data also suggests that these antibodies mediate the contractile response through separate receptors. The finding that guinea pig IgE can mediate pulmonary smooth muscle contraction suggests this species can be a model for IgE-mediated events in the lung.
Assuntos
Antígenos/imunologia , Imunoglobulina E/metabolismo , Contração Muscular , Receptores Imunológicos/fisiologia , Animais , Ligação Competitiva , Cromatografia de Afinidade , Cobaias , Temperatura Alta , Imunoglobulina E/fisiologia , Imunoglobulina G/imunologia , Imunoglobulina G/fisiologia , Técnicas de Imunoadsorção , Pulmão , Coelhos , Receptores de IgE , TraqueiaRESUMO
We have shown previously in humans that insulin partly suppresses hepatic glucose production (HGP) by an extrahepatic (indirect) mechanism. In the present study, we investigated the role of free fatty acids (FFAs) in mediating the extrahepatic effects of insulin in humans and determined the extent to which insulin can regulate HGP by a non-FFA-mediated effect. Sixteen healthy men received an intravenous tolbutamide infusion for 3 h, and pancreatic insulin secretion was calculated by deconvolution of peripheral C-peptide levels. On a subsequent occasion, equimolar exogenous insulin was infused by peripheral vein. In both studies, glucose was clamped at euglycemia. We have previously validated this method and shown no independent insulin-like activity of tolbutamide. During the clamp, 9 of the 16 subjects received a low dose of heparin and Intralipid to prevent the insulin-induced suppression of FFAs, while 7 subjects received a high dose of heparin and Intralipid to raise FFAs approximately 2.5-fold. In both the high- and low-dose groups, peripheral insulin was higher and calculated portal insulin lower with peripheral versus portal insulin delivery. In the low-dose group, HGP decreased by 68.3 +/- 2.1% with portal insulin delivery and 64.7 +/- 3.7% with peripheral insulin delivery (NS). In the high-dose group, HGP decreased by 58.0 +/- 4.5% with portal insulin and 48.3 +/- 5.0% with peripheral insulin (P < 0.05). Four individuals who participated in the high-dose group underwent an additional peripheral insulin study in which the same dose of exogenous insulin was infused as in the high-dose group but in the absence of heparin and Intralipid. During this latter study, FFA levels declined by approximately 90% during hyperinsulinemia, and HGP was suppressed by 71.8 +/- 5.6%, which was a much greater suppression (P < 0.01) than when FFA levels were raised in these subjects during the equivalent rate insulin infusion. In summary, the previously observed greater suppression of HGP with equimolar peripheral versus portal insulin is eliminated or reversed, depending on plasma FFA levels, if FFAs are prevented from decreasing, suggesting an important role of FFAs in mediating the extrahepatic effects of insulin on HGP. However, the effect of FFA clamping is relatively small with a significant degree of suppression of HGP (by approximately 50%), which remains even when FFAs are elevated above basal levels, suggesting that in the physiological range FFAs only partially influence the suppression of HGP in humans. This suggests that other mechanisms, most likely hepatic, dominate the acute insulin-induced suppression of glucose production.
Assuntos
Emulsões Gordurosas Intravenosas/administração & dosagem , Ácidos Graxos não Esterificados/metabolismo , Glucose/metabolismo , Heparina/administração & dosagem , Hiperinsulinismo/sangue , Insulina/metabolismo , Fígado/metabolismo , Adulto , Peptídeo C/sangue , Peptídeo C/metabolismo , Estudos de Coortes , Ácidos Graxos não Esterificados/sangue , Glucagon/sangue , Glucagon/metabolismo , Glucose/administração & dosagem , Glucose/análise , Técnica Clamp de Glucose , Humanos , Hiperinsulinismo/induzido quimicamente , Hiperinsulinismo/metabolismo , Hipoglicemiantes/administração & dosagem , Infusões Intravenosas , Insulina/administração & dosagem , Insulina/análise , Fígado/efeitos dos fármacos , Masculino , Fatores de Tempo , Tolbutamida/administração & dosagem , Triglicerídeos/sangue , TrítioRESUMO
Although isoprene synthesis is closely coupled to photosynthesis, both via ATP requirements and carbon substrate availability, control of isoprene emission is not always closely linked to photosynthetic processes. In this study we grew velvet bean (Mucuna sp.) under different levels of photon flux density (PFD) and nitrogen availability in an effort to understand better the degree to which these two processes are linked. As has been observed in past studies, we found that during early leaf ontogeny the onset of positive rates of net photosynthesis precedes that of isoprene emission by 3 to 4 d. Other studies have shown that this lag is correlated with the induction of isoprene synthase activity, indicating that overall control of the process is under control of that enzyme. During leaf senescence, photosynthesis rate and isoprene emission rate declined in parallel, suggesting similar controls over the two processes. This coordinated decline was accelerated when plants were grown with high PFD and high nitrogen availability. The latter effect included declines in the photon yield of photosynthesis, suggesting that an unexplained stress arose during growth under these conditions, triggering a premature decline in photosynthesis and isoprene emission rate. In mature leaves, growth PFD and nitrogen nutrition affected photosynthesis and isoprene emission in qualitatively similar, but quantitatively different, ways. This resulted in a significant shift in the percentage of fixed carbon that was re-emitted as isoprene. In the case of increasing growth PFD, isoprene emission rate was more strongly affected than photosynthesis rate, and more carbon was lost as isoprene. In the case of increasing nitrogen, photosynthesis rate increased more than isoprene emission rate, and leaves containing high amounts of nitrogen lost a lower percentage of their assimilated carbon as isoprene. Taken together, our results demonstrate that, although the general correlation between isoprene emission rate and photosynthesis rate is consistently expressed, there is evidence that both processes are capable of independent responses to plant growth environment.
RESUMO
Despite the known biochemical production of a range of aromatic compounds by plants and the presence of benzenoids in floral scents, the emissions of only a few benzenoid compounds have been reported from the biosphere to the atmosphere. Here, using evidence from measurements at aircraft, ecosystem, tree, branch and leaf scales, with complementary isotopic labeling experiments, we show that vegetation (leaves, flowers, and phytoplankton) emits a wide variety of benzenoid compounds to the atmosphere at substantial rates. Controlled environment experiments show that plants are able to alter their metabolism to produce and release many benzenoids under stress conditions. The functions of these compounds remain unclear but may be related to chemical communication and protection against stress. We estimate the total global secondary organic aerosol potential from biogenic benzenoids to be similar to that from anthropogenic benzenoids (~10 Tg y(-1)), pointing to the importance of these natural emissions in atmospheric physics and chemistry.
Assuntos
Atmosfera/análise , Benzeno/química , Combustíveis Fósseis/análise , Árvores/metabolismo , Compostos Orgânicos Voláteis/química , Clima , Ecossistema , Estresse Fisiológico/fisiologiaRESUMO
A computer program is constructed which models the production of platelet volumes from megakaryocyte cytoplasmic volumes by random binary sequential division. The volume distributions that are produced are compared with measured platelet volume distributions in rat, rabbit and man. These platelet volume distributions depend on the fragmentation pattern and the dispersion about the mean of the Gaussian distribution of binary divisions. The results of changing one of these parameters, while keeping the other fixed, are also presented.
Assuntos
Plaquetas/fisiologia , Computadores , Hematopoese , Megacariócitos/fisiologia , Software , Animais , Citoplasma/fisiologia , Humanos , Modelos Biológicos , Coelhos , RatosRESUMO
The leaves of Cymopterus longipes form prostrate rosettes early in the spring. As the weather warms, these leaves are elevated on a pseudoscape (false stem) which develops below the rosette through the elongation of the caudex (in the region between root and shoot). The effect of this growth form change on the water relations and photosynthesis in C. longipes was investigated. Pseudoscape height was not linked to phenology or plant size. Leaf conductance, leaf temperature, and leaf water potential were notably similar between plants with different pseudoscape height growing in different microsites. Experimental manipulation of the microclimate around plants growing naturally allowed us to demonstrate that increased temperature led to an increase in the rate of pseudoscape elongation. By changing the distance above the ground surface of the rosettes of some plants we determined that leaf temperature, leaf to air vapour concentration deficits, leaf conductances, and leaf water potentials were all influenced by pseudoscape height. Leaf conductance in C. longipes had a strong negative relationship with ΔW. Since the temperature response of net photosynthesis was extremely flat it was concluded that pseudoscape elongation may be an important morphological means of increasing water use efficiency.
RESUMO
Photosynthetic characteristics of three species of Sphagnum common in the foothills of the Brooks Range on the North Slope of Alaska were investigated. Generally, light-saturated rates of net photosynthesis decreased in the order S. squarrosum, S. angustifolium, and S. warnstorfii when plants were grown under common growth chamber conditions. For field-grown S. angustifolium, average light compensation point at 10°C was 37 µmol m-2s-1 photosynthetic photon flux density (PPFD), and light saturation occurred between 250 and 500 µmol m-2 s-1. At 20°C, compensation point increased to 127 µmol m-2s-1 and the PPFD required for light saturation increased to approximately 500 µmol m-2s-1, while maximum rates of CO2 uptake increased only slightly. Light response curves of chamber-grown plants exhibited substantially lower compensation points and higher light-saturated rates of CO2 assimilation than field-grown material, due perhaps to a higher percentage of green, photosynthetically competent tissue. All three species exhibited broad responses to temperature, with optima near 20°C, and maintained at least 75% of maximum assimilation between approx. 13° and 30°C. Rates at 5°C were approx. 50% of maximum. Studies of the microclimate of Sphagnum at the field research site suggest that CO2 uptake should occur at near light-saturated rates during the day in open tussock tundra but that PPFD may often be limiting under Salix and Betula canopies in a water track drainage. Simulations using a simple model provided a seasonal estimate of 0.78 g dry weight (DW) of S. angustifolium produced from each initial g of photosynthetic tissue under willow canopies, assuming no water limitations. Although the simulation model suggests that production would be 66% higher in open tussock tundra, S. angustifolium is rarely found in this potentially more stressful habitat. To explain the relative abundance of Sphagnum in shaded water track areas as compared to open tussock tundra, we postulate that the vascular plant canopies provide protection from adverse effects of high temperatures, excess irradiance and reduced water availability. Under conditions of normal water availability, removal of the vascular plant cover did not affect the tissue water content of S. squarrosum, but resulted in a strong decrease in photosynthetic capacity, accompanied by chlorophyll bleaching. These results suggest that photoinhibition may limit production under certain conditions.
RESUMO
During five different periods between Nov. 1982 and Aug. 1983, the diurnal patterns exhibited in photosynthetic CO2 uptake and stomatal conductance were observed under natural conditions on twigs of Cistus salvifolius, a Mediterranean semi-deciduous shrub which retains a significant proportion of its leaves through the summer drought. During the same periods, net photosynthesis at saturating CO2 partial pressure was measured on the same twigs as a function of irradiance at different temperatures. From these data, photosynthetic capacity, defined here as the CO2- and light-saturated net photosynthesis rate, was obtained as a function of leaf temperature. C. salvifolius is a winter growing species, shoot growth being initiated in Nov. and continuing through May. Photosynthetic capacity was quite high in Nov., March and June, exceeding 40 µmol m-2 s-1 at optimum temperature. In Dec., photosynthetic capacity was somewhat reduced, perhaps due to low night-time temperatures (<5°C) during the measurement period. In Aug., capacity in oversummering shoots at optimum temperature fell to less than 8 µmol m-2 s-1, due to water trees and perhaps leaf aging. Seasonal changes in maximal photosynthetic rates under ambient conditions were similar, and like those found in co-occurring evergreen sclerophylls. Like the evergreens, Cistus demonstrated considerable stomatal control of transpirational water loss, particularly in oversummering leaves. During each measurement period except Aug. when capacity was quite low, the maximum rates of net photosynthesis measured under ambient conditions were less than half the measured photosynthetic capacities at comparable temperatures, suggesting an apparent excess nitrogen investment in the photosynthetic apparatus.
RESUMO
From field gas-exchange measurements on Arbutus unedo growing in Portugal, parameter values necessary to apply an analytical, physiologicallybased model of C 3 photosynthesis were obtained. The model successfully simulated measured diurnal photosynthetic responses in Arbutus during periods without water stress, under both natural and CO2-saturating conditions. The model was used to analyze those factors limiting primary productivity during each of the experimental days. Due to a large investment in ribulose bisphosphate (RuBP) regeneration capacity, irradiance was rarely limiting, even during cloudy periods, but the limitation imposed by stomatal conductance was quite large, averaging over 30%. The fact that experimental leaves were maintained in a horizontal position is at least partially responsible for these results. Possible other reasons for this apparent excess of RuBP regeneration capacity visa-vis RuBP carboxylase-oxygenase concentration are discussed.
RESUMO
Gas exchange characteristics in leaves of the sclerophyll shrub Quercus coccifera were studied in the natural habitat in Portugal during spring and during the summer dry period. Compared to other sclerophyll species growing at the same site, photosynthesis in leaves of Quercus coccifera was less affected by water stress. Moderate water stress after six weeks of drought led to large decreases in stomatal conductance but no change in mesophyll photosynthetic capacity as compared to late spring. Leaf internal CO2 pressure remained near 220 µbar during diurnal courses in the spring. On midsummer days, leaf internal CO2 decreased from a late morning value of 200 µbar to a late afternoon value of approximately 150 µbar. In contrast to Quercus suber (Tenhunen et al. 1984), restriction of CO2 supply due to stomatal closure reduced net CO2 uptake at midday and in the afternoon during midsummer. A decrease in leaf carboxylation efficiency and an increase in CO2 compensation point at midday also played an important role in determining the diurnal course of net photosynthesis. During the late stages of drought in September, severe water stress led to reduction in mesophyll photosynthetic capacity and further reduction in leaf conductance. The observed decrease in mesophyll photosynthetic capacity was correlated with decrease in the daily minimum leaf water potential to greater negative values than-30 bar. At this time, CO2 saturated photosynthetic rates decreased as much as 50% over the course of a day when measured at constant saturating light, 32° C leaf temperature, and a water vapor mole fraction difference between leaf and air of 30 mbar bar-1.
RESUMO
Mediterranean sclerophyll shrubs respond to seasonal drought by adjusting the amount of leaf area exposed and by reducing gas exchange via stomatal closure mechanisms. The degree to which each of these modifications can influence plant carbon and water balances under typical mediterranean-type climate conditions is examined. Leaf area changes are assessed in the context of a canopy structure and light microclimate model. Shifts in physiological response are examined with a mechanistically-based model of C3 leaf gas exchange that simulates progressive reduction of maximum photosynthesis and transpiration rates and increasingly strong midday stomatal closure over the course of drought. The results demonstrate that midday stomatal closure may effectively contribute to drought avoidance, increase water use efficiency, and strongly alter physiological efficiency in the conversion of intercepted light energy to photoproducts. Physiological adjustments lead to larger reductions in water use than occur when comparing leaf area index 3.5 to 1.5, extremes found for natural stands of sclerophyll shrubs in the California chaparral. Reductions in leaf area have the strongest effect on resource capture and use during non-water-stressed periods and the least effect under extreme drought conditions, while shifts in physiological response lead to large savings of water and efficient water use under extreme stress. An important model parameter termed GFAC (proportionality factor expressing the relation of conductance [g] to net photosynthesis rate) is utilized, which changes in response to the integrated water stress experimence of shrubs and alters the degree to which stomata may open for a given rate of carbon fixation. We attempt to interpret this parameter in terms of physiological mechanisms known to modify control of leaf gas exchange during drought. The analysis helps visualize means by which canopy gas exchange behavior may be coupled to physiological changes occurring in the root environment during soil drying.
RESUMO
In tussock tundra areas of the foothills north of the Brooks Range, Alaska, up to two-thirds of annual precipitation may occur during intermittent summer thunderstorms. The seasonal pattern in capitulum water content of Sphagnum spp. depends on the frequency and duration of these precipitation events, on the microtopography of the habitat including depth of thaw, and on morphological characteristics of the individual species. The response of net photosynthesis to varying water content in Sphagnum squarrosum and S. angustifolium growing under willow canopies in a tussock tundra area near the Dalton Highway on the North Slope of Alaska was examined in the field. After a period in June required to develop photosynthetic capability, capitula water content was essentially optimal for photosynthesis in the range from 6 to 10 g H2O/g DW. Above this range, the rate of CO2 uptake was reduced, presumably due to limitations on CO2 diffusion to the photosynthetically active sites. At water contents below the optimum, net photosynthesis fell rapidly until reaching compensation at approximately 1 g H2O/g DW. Dependent on changes in weather conditions, average water content of Sphagnum samples collected in the field occasionally fell below 5 g H2O/g DW. During a particularly dry period, water content of individual Sphagnum hummocks fell below 1 g H2O/g DW, indicating that water stress does limit Sphagnum photosynthetic production in this habitat.
RESUMO
A physiologically based steady-state model of whole leaf photosynthesis (WHOLEPHOT) is used to analyze observed net photosynthesis daily time courses of soybean, Glycine max (L.) Merr., leaves. Observations during two time periods of the 1978 growing season are analyzed and compared. After adjustment of the model for soybean, net photosynthesis rates are calculated with the model in response to measured incident light intensity, leaf temperature, air carbon dioxide concentration, and leaf diffusion resistance. The steady-state calculations closely approximate observed net photosynthesis. Results of the comparison reveal a decrease in photosynthetic capacity in leaves sampled during the second time period, which is associated with decreasing ability of leaves to respond to light intensity and internal air space carbon dioxide concentration, increasing mesophyll resistance, and increasing stomatal resistance.
RESUMO
Isoprene emission from plants represents one of the principal biospheric controls over the oxidative capacity of the continental troposphere. In the study reported here, the seasonal pattern of isoprene emission, and its underlying determinants, were studied for aspen trees growing in the Rocky Mountains of Colorado. The springtime onset of isoprene emission was delayed for up to 4 weeks following leaf emergence, despite the presence of positive net photosynthesis rates. Maximum isoprene emission rates were reached approximately 6 weeks following leaf emergence. During this initial developmental phase, isoprene emission rates were negatively correlated with leaf nitrogen concentrations. During the autumnal decline in isoprene emission, rates were positively correlated with leaf nitrogen concentration. Given past studies that demonstrate a correlation between leaf nitrogen concentration and isoprene emission rate, we conclude that factors other than the amount of leaf nitrogen determine the early-season initiation of isoprene emission. The late-season decline in isoprene emission rate is interpreted as due to the autumnal breakdown of metabolic machinery and loss of leaf nitrogen. In potted aspen trees, leaves that emerged in February and developed under cool, springtime temperatures did not emit isoprene until 23 days after leaf emergence. Leaves that emrged in July and developed in hot, midsummer temperatures emitted isoprene within 6 days. Leaves that had emerged during the cool spring, and had grown for several weeks without emitting isoprene, could be induced to emit isoprene within 2 h of exposure to 32°C. Continued exposure to warm temperatures resulted in a progressive increase in the isoprene emission rate. Thus, temperature appears to be an important determinant of the early season induction of isoprene emission. The seasonal pattern of isoprene emission was examined in trees growing along an elevational gradient in the Colorado Front Range (1829-2896 m). Trees at different elevations exhibited staggered patterns of bud-break and initiation of photosynthesis and isoprene emission in concert with the staggered onset of warm, springtime temperatures. The springtime induction of isoprene emission could be predicted at each of the three sites as the time after bud break required for cumulative temperatures above 0°C to reach approximately 400 degree days. Seasonal temperature acclimation of isoprene emission rate and photosynthesis rate was not observed. The temperature dependence of isoprene emission rate between 20 and 35°C could be accurately predicted during spring and summer using a single algorithm that describes the Arrhenius relationship of enzyme activity. From these results, it is concluded that the early season pattern of isoprene emission is controlled by prevailing temperature and its interaction with developmental processes. The late-season pattern is determined by controls over leaf nitrogen concentration, especially the depletion of leaf nitrogen during senescence. Following early-season induction, isoprene emission rates correlate with photosynthesis rates. During the season there is little acclimation to temperature, so that seasonal modeling simplifies to a single temperature-response algorithm.
RESUMO
The construction of a goniometric glove is described. Each of the sensors in the glove was calibrated over a custom built metal hand using blocks of known angles as angular references. The digital data output from each sensor of the glove were converted into angular displacements at each joint. The glove was validated for consistency of measurement and accuracy over a custom built metal jig and in the human hand. The accuracy of the glove was found to be within the limits of traditional goniometry. It is proposed that goniometric gloves could be useful in the assessment of hand function.
Assuntos
Mãos/fisiologia , Calibragem , Humanos , Reprodutibilidade dos TestesRESUMO
The vibrational spectrum of CO2 up to second overtones has been calculated at four different ab initio levels using second order perturbation theory equations in a simplified manner, in which just a few cross-terms suitable for numerical estimation are considered in the Taylor series representing the potential energy and dipole moment functions. The series coefficients are obtained through polynomial regression of estimated single point energy and dipole values for a few distorted geometries along each normal coordinate. The effect of Fermi resonance on near-degenerate energy levels was also taken into account through the usual first order perturbation equations. MP2/6-31G(extended) frequency estimates have a root mean square error of just 32.14 cm(-1). This accuracy is achieved partly due to the underestimation of the harmonic frequencies, which compensates for the neglect of the cross-term chi(ij) anharmonic constants. The chi(ii) constants which depend on cubic and quartic energy coefficients are reasonably well estimated at all ab initio levels. The energy coefficient beta(sbb) responsible for the magnitude of the Fermi resonance is estimated with a maximum error of just 13%. Despite the inclusion of anharmonicities, errors for band intensities are still much larger than for the frequencies. Both electrical and mechanical anharmonicities may be equally important to the band intensity.
Assuntos
Dióxido de Carbono/química , Modelos Teóricos , Espectrofotometria Infravermelho , VibraçãoRESUMO
The polar tensors of cis and trans-1,2-difluoroethylenes have been determined with new normal modes based in a reassignment of nu(7) and nu(12) bands of the trans isomers and frequency values corrected for Fermi resonances and phase shifts. The signs of the dipole moment derivatives (and its directions, for B(u) symmetry species) were considered to be those of MP2/6-31G** estimates. Root mean square errors calculated for the new tensor element values from each pair of isotopomers (trans-1,2-C(2)H(2)F(2)/trans-1,2-C(2)D(2)F(2) and cis-1,2-C(2)H(2)F(2)/cis-1,2-C(2)D(2)F(2)) show that the new polar tensor sets fit the isotopic invariance criterion better than previously reported sets. The accuracy of polar tensor transference procedures was tested by calculating the infrared intensities of trans-1,2-C(2)H(2)F(2) through the new polar tensors of the cis isomer. The resulting estimates are very accurate and also support the new band assignment, though the A(6) intensity remains still somewhat underestimated.