Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(37): e2401389, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38733221

RESUMO

The growing demand for fossil fuels and subsequent CO2 emissions prompted a search for alternate sources of energy and a reduction in CO2. Photocatalysis driven by solar light has been found as a potential research area to tackle both these problems. In this direction, SAC@MOF (Single-atom loaded MOFs) photocatalysis is an emerging field and a promising technology. The unique properties of single-atom catalysts (SACs), such as high catalytic activity and selectivity, are leveraged in these systems. Photocatalysis, focusing on the utilization of Metal-Organic Frameworks (MOFs) as platforms for creating single-atom catalysts (SACs) characterized by metal single-atoms (SAs) as their active sites, are noted for their unparalleled atomic efficiency, precisely defined active sites, and superior photocatalytic performance. The synergy between MOFs and SAs in photocatalytic systems is meticulously examined, highlighting how they collectively enhance photocatalytic efficiency. This review examines SAC@MOF development and applications in environmental and energy sectors, focusing on synthesis and stabilization methods for SACs on MOFs and also characterization techniques vital for understanding these catalysts. The potential of SAC@MOF in CO2 Photoreduction and Photocatalytic H2 evolution is highlighted, emphasizing its role in green energy technologies and advances in materials science and Photocatalysis.

2.
Chemphyschem ; 21(8): 814-820, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32124533

RESUMO

We chose to understand the cyclic instability and rate instability issues in the promising class of Na+ conversion and alloying anodes with Sb2 Se3 as a typical example. We employ a synthetic strategy that ensures efficient rGO (reduced graphene oxide) wrapping over Sb2 Se3 material. By utilization of the minimum weight of additive (5 wt.% of rGO), we achieved a commendable performance with a reversible capacity of 550 mAh g-1 at a specific current of 100 mA g-1 and an impressive rate performance with 100 % capacity retention after high current cycling involving a 2 Ag-1 intermediate current step. The electrochemical galvanostatic intermittent titration technique (GITT) has been employed for the first time to draw a rationale between the enhanced performance and the increased mobility in the rGO wrapped composite (Sb2 Se3 -rGO) compared to bare Sb2 Se3 . GITT analysis reveals higher Na+ diffusion coefficients (approx. 30 fold higher) in the case of Sb2 Se3 -rGO as compared to bare Sb2 Se3 throughout the operating voltage window. For Sb2 Se3 -rGO the diffusion coefficients in the range of 8.0×10-15  cm2 s-1 to 2.2×10-12  cm2 s-1 were observed, while in case of bare Sb2 Se3 the diffusion coefficients in the range of 1.6×10-15  cm2 s-1 to 9.4×10-15  cm2 s-1 were observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA