Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Plant Physiol ; 195(3): 1775-1795, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38530638

RESUMO

In flowering plants, male gametes are immotile and carried by dry pollen grains to the female organ. Dehydrated pollen is thought to withstand abiotic stress when grains are dispersed from the anther to the pistil, after which sperm cells are delivered via pollen tube growth for fertilization and seed set. Yet, the underlying molecular changes accompanying dehydration and the impact on pollen development are poorly understood. To gain a systems perspective, we analyzed published transcriptomes and proteomes of developing Arabidopsis thaliana pollen. Waves of transcripts are evident as microspores develop to bicellular, tricellular, and mature pollen. Between the "early"- and "late"-pollen-expressed genes, an unrecognized cluster of transcripts accumulated, including those encoding late-embryogenesis abundant (LEA), desiccation-related protein, transporters, lipid-droplet associated proteins, pectin modifiers, cysteine-rich proteins, and mRNA-binding proteins. Results suggest dehydration onset initiates after bicellular pollen is formed. Proteins accumulating in mature pollen like ribosomal proteins, initiation factors, and chaperones are likely components of mRNA-protein condensates resembling "stress" granules. Our analysis has revealed many new transcripts and proteins that accompany dehydration in developing pollen. Together with published functional studies, our results point to multiple processes, including (1) protect developing pollen from hyperosmotic stress, (2) remodel the endomembrane system and walls, (3) maintain energy metabolism, (4) stabilize presynthesized mRNA and proteins in condensates of dry pollen, and (5) equip pollen for compatibility determination at the stigma and for recovery at rehydration. These findings offer novel models and molecular candidates to further determine the mechanistic basis of dehydration and desiccation tolerance in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Pólen , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Desidratação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética , Perfilação da Expressão Gênica
2.
Plant Cell ; 34(11): 4143-4172, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35961044

RESUMO

Ethiopian mustard (Brassica carinata) is an ancient crop with remarkable stress resilience and a desirable seed fatty acid profile for biofuel uses. Brassica carinata is one of six Brassica species that share three major genomes from three diploid species (AA, BB, and CC) that spontaneously hybridized in a pairwise manner to form three allotetraploid species (AABB, AACC, and BBCC). Of the genomes of these species, that of B. carinata is the least understood. Here, we report a chromosome scale 1.31-Gbp genome assembly with 156.9-fold sequencing coverage for B. carinata, completing the reference genomes comprising the classic Triangle of U, a classical theory of the evolutionary relationships among these six species. Our assembly provides insights into the hybridization event that led to the current B. carinata genome and the genomic features that gave rise to the superior agronomic traits of B. carinata. Notably, we identified an expansion of transcription factor networks and agronomically important gene families. Completion of the Triangle of U comparative genomics platform has allowed us to examine the dynamics of polyploid evolution and the role of subgenome dominance in the domestication and continuing agronomic improvement of B. carinata and other Brassica species.


Assuntos
Brassica , Brassica/genética , Tetraploidia , Genoma de Planta/genética , Poliploidia , Diploide
3.
Plant Physiol ; 191(4): 2534-2550, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36715402

RESUMO

Calcium ion transporting systems control cytosol Ca2+ levels ([Ca2+]cyt) and generate transient calcium (Ca2+) signatures that are key to environmental responses. Here, we report an impact of resting [Ca2+]cyt on plants from the functional study of calmodulin-regulated Ca2+ pumps or Ca2+-ATPases in Arabidopsis (Arabidopsis thaliana). The plasma membrane-localized pumps ACA8 (autoinhibited Ca2+-ATPase) and ACA10, as well as the vacuole-localized pumps ACA4 and ACA11, were critical in maintaining low resting [Ca2+]cyt and essential for plant survival under chilling and heat-stress conditions. Their loss-of-function mutants aca8 aca10 and aca4 aca11 had autoimmunity at normal temperatures, and this deregulated immune activation was enhanced by low temperature, leading to chilling lethality. Furthermore, these mutants showed an elevated resting [Ca2+]cyt, and a reduction of external Ca2+ lowered [Ca2+]cyt and repressed their autoimmunity and cold susceptibility. The aca8 aca10 and the aca4 aca11 mutants were also susceptible to heat, likely resulting from more closed stomata and higher leaf surface temperature than the wild type. These observations support a model in which the regulation of resting [Ca2+]cyt is critical to how plants regulate biotic and abiotic responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Citosol/metabolismo , Membrana Celular/metabolismo , ATPases Transportadoras de Cálcio/genética , ATPases Transportadoras de Cálcio/metabolismo
4.
Plant Physiol ; 191(4): 2276-2287, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36708195

RESUMO

A potential strategy to mitigate oxidative damage in plants is to increase the abundance of antioxidants, such as ascorbate (i.e. vitamin C). In Arabidopsis (A. thaliana), a rate-limiting step in ascorbate biosynthesis is a phosphorylase encoded by Vitamin C Defective 2 (VTC2). To specifically overexpress VTC2 (VTC2 OE) in pollen, the coding region was expressed using a promoter from a gene with ∼150-fold higher expression in pollen, leading to pollen grains with an eight-fold increased VTC2 mRNA. VTC2 OE resulted in a near-sterile phenotype with a 50-fold decrease in pollen transmission efficiency and a five-fold reduction in the number of seeds per silique. In vitro assays revealed pollen grains were more prone to bursting (greater than two-fold) or produced shorter, morphologically abnormal pollen tubes. The inclusion of a genetically encoded Ca2+ reporter, mCherry-GCaMP6fast (CGf), revealed pollen tubes with altered tip-focused Ca2+ dynamics and increased bursting frequency during periods of oscillatory and arrested growth. Despite these phenotypes, VTC2 OE pollen failed to show expected increases in ascorbate or reductions in reactive oxygen species, as measured using a redox-sensitive dye or a roGFP2. However, mRNA expression analyses revealed greater than two-fold reductions in mRNA encoding two enzymes critical to biosynthetic pathways related to cell walls or glyco-modifications of lipids and proteins: GDP-d-mannose pyrophosphorylase (GMP) and GDP-d-mannose 3',5' epimerase (GME). These results support a model in which the near-sterile defects resulting from VTC2 OE in pollen are associated with feedback mechanisms that can alter one or more signaling or metabolic pathways critical to pollen tube growth and fertility.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Sinalização do Cálcio , Pólen , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fertilidade/genética , Sinalização do Cálcio/genética , Expressão Gênica , Pólen/enzimologia , Pólen/genética , Tubo Polínico/enzimologia , Tubo Polínico/genética , Regiões Promotoras Genéticas/genética
5.
Physiol Plant ; 176(2): e14228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38413387

RESUMO

P4 ATPases (i.e., lipid flippases) are eukaryotic enzymes that transport lipids across membrane bilayers. In plants, P4 ATPases are named Aminophospholipid ATPases (ALAs) and are organized into five phylogenetic clusters. Here we generated an Arabidopsis mutant lacking all five cluster-2 ALAs (ala8/9/10/11/12), which is the most highly expressed ALA subgroup in vegetative tissues. Plants harboring the quintuple knockout (KO) show rosettes that are 2.2-fold smaller and display chlorotic lesions. A similar but less severe phenotype was observed in an ala10/11 double KO. The growth and lesion phenotypes of ala8/9/10/11/12 mutants were reversed by expressing a NahG transgene, which encodes an enzyme that degrades salicylic acid (SA). A role for SA in promoting the lesion phenotype was further supported by quantitative PCR assays showing increased mRNA abundance for an SA-biosynthesis gene ISOCHORISMATE SYNTHASE 1 (ICS1) and two SA-responsive genes PATHOGENESIS-RELATED GENE 1 (PR1) and PR2. Lesion phenotypes were also reversed by growing plants in liquid media containing either low calcium (~0.1 mM) or high nitrogen concentrations (~24 mM), which are conditions known to suppress SA-dependent autoimmunity. Yeast-based fluorescent lipid uptake assays revealed that ALA10 and ALA11 display overlapping substrate specificities, including the transport of LysoPC signaling lipids. Together, these results establish that the biochemical functions of ALA8-12 are at least partially overlapping, and that deficiencies in cluster-2 ALAs result in an SA-dependent autoimmunity phenotype that has not been observed for flippase mutants with deficiencies in other ALA clusters.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Salicílico/metabolismo , Filogenia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Adenosina Trifosfatases/genética , Lipídeos
6.
Plant Physiol ; 187(4): 2361-2380, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34601610

RESUMO

Sexual reproduction in flowering plants takes place without an aqueous environment. Sperm are carried by pollen through air to reach the female gametophyte, though the molecular basis underlying the protective strategy of the male gametophyte is poorly understood. Here we compared the published transcriptomes of Arabidopsis thaliana pollen, and of heat-responsive genes, and uncovered insights into how mature pollen (MP) tolerates desiccation, while developing and germinating pollen are vulnerable to heat stress. Germinating pollen expresses molecular chaperones or "heat shock proteins" in the absence of heat stress. Furthermore, pollen tubes that grew through pistils at basal temperature showed induction of the endoplasmic reticulum (ER) stress response, which is a characteristic of stressed vegetative tissues. Recent studies show MP contains mRNA-protein (mRNP) aggregates that resemble "stress" granules triggered by heat or other stresses to protect cells. Based on these observations, we postulate that mRNP particles are formed in maturing pollen in response to developmentally programmed dehydration. Dry pollen can withstand harsh conditions as it is dispersed in air. We propose that, when pollen lands on a compatible pistil and hydrates, mRNAs stored in particles are released, aided by molecular chaperones, to become translationally active. Pollen responds to osmotic, mechanical, oxidative, and peptide cues that promote ER-mediated proteostasis and membrane trafficking for tube growth and sperm discharge. Unlike vegetative tissues, pollen depends on stress-protection strategies for its normal development and function. Thus, heat stress during reproduction likely triggers changes that interfere with the normal pollen responses, thereby compromising male fertility. This holistic perspective provides a framework to understand the basis of heat-tolerant strains in the reproduction of crops.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Retículo Endoplasmático/metabolismo , Fertilidade/genética , Resposta ao Choque Térmico/genética , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Chaperonas Moleculares/metabolismo , Transcriptoma
7.
Plant Physiol ; 185(3): 619-631, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33822217

RESUMO

The lipid bilayer of biological membranes has a complex composition, including high chemical heterogeneity, the presence of nanodomains of specific lipids, and asymmetry with respect to lipid composition between the two membrane leaflets. In membrane trafficking, membrane vesicles constantly bud off from one membrane compartment and fuse with another, and both budding and fusion events have been proposed to require membrane lipid asymmetry. One mechanism for generating asymmetry in lipid bilayers involves the action of the P4 ATPase family of lipid flippases; these are biological pumps that use ATP as an energy source to flip lipids from one leaflet to the other. The model plant Arabidopsis (Arabidopsis thaliana) contains 12 P4 ATPases (AMINOPHOSPHOLIPID ATPASE1-12; ALA1-12), many of which are functionally redundant. Studies of P4 ATPase mutants have confirmed the essential physiological functions of these pumps and pleiotropic mutant phenotypes have been observed, as expected when genes required for basal cellular functions are disrupted. For instance, phenotypes associated with ala3 (dwarfism, pollen defects, sensitivity to pathogens and cold, and reduced polar cell growth) can be related to membrane trafficking problems. P5 ATPases are evolutionarily related to P4 ATPases, and may be the counterpart of P4 ATPases in the endoplasmic reticulum. The absence of P4 and P5 ATPases from prokaryotes and their ubiquitous presence in eukaryotes make these biological pumps a defining feature of eukaryotic cells. Here, we review recent advances in the field of plant P4 and P5 ATPases.


Assuntos
Adenosina Trifosfatases/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Fosfolipídeos/metabolismo , Estrutura Molecular
8.
Plant Physiol ; 185(4): 1966-1985, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33575795

RESUMO

Generating cellular Ca2+ signals requires coordinated transport activities from both Ca2+ influx and efflux pathways. In Arabidopsis (Arabidopsis thaliana), multiple efflux pathways exist, some of which involve Ca2+-pumps belonging to the Autoinhibited Ca2+-ATPase (ACA) family. Here, we show that ACA1, 2, and 7 localize to the endoplasmic reticulum (ER) and are important for plant growth and pollen fertility. While phenotypes for plants harboring single-gene knockouts (KOs) were weak or undetected, a triple KO of aca1/2/7 displayed a 2.6-fold decrease in pollen transmission efficiency, whereas inheritance through female gametes was normal. The triple KO also resulted in smaller rosettes showing a high frequency of lesions. Both vegetative and reproductive phenotypes were rescued by transgenes encoding either ACA1, 2, or 7, suggesting that all three isoforms are biochemically redundant. Lesions were suppressed by expression of a transgene encoding NahG, an enzyme that degrades salicylic acid (SA). Triple KO mutants showed elevated mRNA expression for two SA-inducible marker genes, Pathogenesis-related1 (PR1) and PR2. The aca1/2/7 lesion phenotype was similar but less severe than SA-dependent lesions associated with a double KO of vacuolar pumps aca4 and 11. Imaging of Ca2+ dynamics triggered by blue light or the pathogen elicitor flg22 revealed that aca1/2/7 mutants display Ca2+ transients with increased magnitudes and durations. Together, these results indicate that ER-localized ACAs play important roles in regulating Ca2+ signals, and that the loss of these pumps results in male fertility and vegetative growth deficiencies.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Retículo Endoplasmático/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Desenvolvimento Vegetal , Pólen/genética
9.
Plant Physiol ; 182(4): 2111-2125, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32051180

RESUMO

Aminophospholipid ATPases (ALAs) are lipid flippases involved in transporting specific lipids across membrane bilayers. Arabidopsis (Arabidopsis thaliana) contains 12 ALAs in five phylogenetic clusters, including four in cluster 3 (ALA4-ALA7). ALA4/5 and ALA6/7, are expressed primarily in vegetative tissues and pollen, respectively. Previously, a double knockout of ALA6/7 was shown to result in pollen fertility defects. Here we show that a double knockout of ALA4/5 results in dwarfism, characterized by reduced growth in rosettes (6.5-fold), roots (4.3-fold), bolts (4.5-fold), and hypocotyls (2-fold). Reduced cell size was observed for multiple vegetative cell types, suggesting a role for ALA4/5 in cellular expansion. Members of the third ALA cluster are at least partially interchangeable, as transgenes expressing ALA6 in vegetative tissues partially rescued ala4/5 mutant phenotypes, and expression of ALA4 transgenes in pollen fully rescued ala6/7 mutant fertility defects. ALA4-GFP displayed plasma membrane and endomembrane localization patterns when imaged in both guard cells and pollen. Lipid profiling revealed ala4/5 rosettes had perturbations in glycerolipid and sphingolipid content. Assays in yeast revealed that ALA5 can flip a variety of glycerolipids and the sphingolipid sphingomyelin across membranes. These results support a model whereby the flippase activity of ALA4 and ALA5 impacts the homeostasis of both glycerolipids and sphingolipids and is important for cellular expansion during vegetative growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Hipocótilo/genética , Hipocótilo/metabolismo , Esfingolipídeos/metabolismo
10.
World J Microbiol Biotechnol ; 37(5): 87, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33881629

RESUMO

Being around for several decades, there is a vast amount of academic research on biomining, and yet it contributes less to the mining industry compared to other conventional technologies. This critique briefly comments on the current status of biomining research, enumerates a number of primary challenges, and elaborates on some kinetically-oriented strategies and bottom-up policies to sustain biomining with focus on critical material extraction and rare earth elements (REEs). Finally, we present some edge cutting developments which may promote new potentials in biomining.


Assuntos
Metais Terras Raras/isolamento & purificação , Mineração/instrumentação , Humanos , Microbiologia Industrial , Mineração/legislação & jurisprudência
11.
Plant Physiol ; 176(4): 2804-2818, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29467178

RESUMO

During pollen-pistil interactions in angiosperms, the male gametophyte (pollen) germinates to produce a pollen tube. To fertilize ovules located within the female pistil, the pollen tube must physically penetrate specialized tissues. Whereas the process of pollen tube penetration through the pistil has been anatomically well described, the genetic regulation remains poorly understood. In this study, we identify a novel Arabidopsis (Arabidopsis thaliana) gene, O-FUCOSYLTRANSFERASE1 (AtOFT1), which plays a key role in pollen tube penetration through the stigma-style interface. Semi-in vivo growth assays demonstrate that oft1 mutant pollen tubes have a reduced ability to penetrate the stigma-style interface, leading to a nearly 2,000-fold decrease in oft1 pollen transmission efficiency and a 5- to 10-fold decreased seed set. We also demonstrate that AtOFT1 is localized to the Golgi apparatus, indicating its potential role in cellular glycosylation events. Finally, we demonstrate that AtOFT1 and other similar Arabidopsis genes represent a novel clade of sequences related to metazoan protein O-fucosyltransferases and that mutation of residues that are important for O-fucosyltransferase activity compromises AtOFT1 function in vivo. The results of this study elucidate a physiological function for AtOFT1 in pollen tube penetration through the stigma-style interface and highlight the potential importance of protein O-glycosylation events in pollen-pistil interactions.


Assuntos
Proteínas de Arabidopsis/genética , Flores/genética , Fucosiltransferases/genética , Tubo Polínico/genética , Polinização/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fertilização/genética , Flores/metabolismo , Fucosiltransferases/classificação , Fucosiltransferases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutação , Filogenia , Plantas Geneticamente Modificadas , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Homologia de Sequência de Aminoácidos
12.
Plant J ; 90(4): 698-707, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28112437

RESUMO

Plants show a rapid systemic response to a wide range of environmental stresses, where the signals from the site of stimulus perception are transmitted to distal organs to elicit plant-wide responses. A wide range of signaling molecules are trafficked through the plant, but a trio of potentially interacting messengers, reactive oxygen species (ROS), Ca2+ and electrical signaling ('trio signaling') appear to form a network supporting rapid signal transmission. The molecular components underlying this rapid communication are beginning to be identified, such as the ROS producing NAPDH oxidase RBOHD, the ion channel two pore channel 1 (TPC1), and glutamate receptor-like channels GLR3.3 and GLR3.6. The plant cell wall presents a plant-specific route for possible propagation of signals from cell to cell. However, the degree to which the cell wall limits information exchange between cells via transfer of small molecules through an extracellular route, or whether it provides an environment to facilitate transmission of regulators such as ROS or H+ remains to be determined. Similarly, the role of plasmodesmata as both conduits and gatekeepers for the propagation of rapid cell-to-cell signaling remains a key open question. Regardless of how signals move from cell to cell, they help prepare distant parts of the plant for impending challenges from specific biotic or abiotic stresses.


Assuntos
Cálcio/metabolismo , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sinalização do Cálcio/genética , Sinalização do Cálcio/fisiologia , Comunicação Celular/genética , Comunicação Celular/fisiologia , Raízes de Plantas/metabolismo , Plasmodesmos/metabolismo
13.
BMC Genomics ; 19(1): 549, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-30041596

RESUMO

BACKGROUND: In flowering plants, the male gametophyte (pollen) is one of the most vulnerable cells to temperature stress. In Arabidopsis thaliana, a pollen-specific Cyclic Nucleotide-Gated cation Channel 16 (cngc16), is required for plant reproduction under temperature-stress conditions. Plants harboring a cncg16 knockout are nearly sterile under conditions of hot days and cold nights. To understand the underlying cause, RNA-Seq was used to compare the pollen transcriptomes of wild type (WT) and cngc16 under normal and heat stress (HS) conditions. RESULTS: Here we show that a heat-stress response (HSR) in WT pollen resulted in 2102 statistically significant transcriptome changes (≥ 2-fold changes with adjusted p-value ≤0.01), representing approximately 15% of 14,226 quantified transcripts. Of these changes, 89 corresponded to transcription factors, with 27 showing a preferential expression in pollen over seedling tissues. In contrast to WT, cngc16 pollen showed 1.9-fold more HS-dependent changes (3936 total, with 2776 differences between WT and cngc16). In a quantitative direct comparison between WT and cngc16 transcriptomes, the number of statistically significant differences increased from 21 pre-existing differences under normal conditions to 192 differences under HS. Of the 20 HS-dependent changes in WT that were most different in cngc16, half corresponded to genes encoding proteins predicted to impact cell wall features or membrane dynamics. CONCLUSIONS: Results here define an extensive HS-dependent reprogramming of approximately 15% of the WT pollen transcriptome, and identify at least 27 transcription factor changes that could provide unique contributions to a pollen HSR. The number of statistically significant transcriptome differences between WT and cngc16 increased by more than 9-fold under HS, with most of the largest magnitude changes having the potential to specifically impact cell walls or membrane dynamics, and thereby potentiate cngc16 pollen to be hypersensitive to HS. However, HS-hypersensitivity could also be caused by the extensive number of differences throughout the transcriptome having a cumulative effect on multiple cellular pathways required for tip growth and fertilization. Regardless, results here support a model in which a functional HS-dependent reprogramming of the pollen transcriptome requires a specific calcium-permeable Cyclic Nucleotide-Gated cation Channel, CNGC16.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Resposta ao Choque Térmico/genética , Pólen/genética , Transcriptoma , Arabidopsis/metabolismo , Sinalização do Cálcio/genética , Técnicas de Inativação de Genes , Pólen/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Plant Mol Biol ; 84(4-5): 387-97, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24101142

RESUMO

Plant auto-inhibited Ca²âº-ATPases (ACA) are crucial in defining the shape of calcium transients and therefore in eliciting plant responses to various stimuli. Arabidopsis thaliana genome encodes ten ACA isoforms that can be divided into four clusters based on gene structure and sequence homology. While isoforms from clusters 1, 2 and 4 have been characterized, virtually nothing is known about members of cluster 3 (ACA12 and ACA13). Here we show that a GFP-tagged ACA12 localizes at the plasma membrane and that expression of ACA12 rescues the phenotype of partial male sterility of a null mutant of the plasma membrane isoform ACA9, thus providing genetic evidence that ACA12 is a functional plasma membrane-resident Ca²âº-ATPase. By ACA12 expression in yeast and purification by CaM-affinity chromatography, we show that, unlike other ACAs, the activity of ACA12 is not stimulated by CaM. Moreover, full length ACA12 is able to rescue a yeast mutant deficient in calcium pumps. Analysis of single point ACA12 mutants suggests that ACA12 loss of auto-inhibition can be ascribed to the lack of two acidic residues--highly conserved in other ACA isoforms--localized at the cytoplasmic edge of the second and third transmembrane segments. Together, these results support a model in which the calcium pump activity of ACA12 is primarily regulated by increasing or decreasing mRNA expression and/or protein translation and degradation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , ATPases Transportadoras de Cálcio/metabolismo , Membrana Celular/enzimologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sequência de Bases , Biocatálise/efeitos dos fármacos , Western Blotting , ATPases Transportadoras de Cálcio/genética , Calmodulina/metabolismo , Calmodulina/farmacologia , Fertilidade/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Microscopia Confocal , Dados de Sequência Molecular , Mutação , Plantas Geneticamente Modificadas , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos
15.
Plant Physiol ; 161(2): 1010-20, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23370720

RESUMO

Cyclic nucleotide-gated channels (CNGCs) have been implicated in diverse aspects of plant growth and development, including responses to biotic and abiotic stress, as well as pollen tube growth and fertility. Here, genetic evidence identifies CNGC16 in Arabidopsis (Arabidopsis thaliana) as critical for pollen fertility under conditions of heat stress and drought. Two independent transfer DNA disruptions of cngc16 resulted in a greater than 10-fold stress-dependent reduction in pollen fitness and seed set. This phenotype was fully rescued through pollen expression of a CNGC16 transgene, indicating that cngc16-1 and 16-2 were both loss-of-function null alleles. The most stress-sensitive period for cngc16 pollen was during germination and the initiation of pollen tube tip growth. Pollen viability assays indicate that mutant pollen are also hypersensitive to external calcium chloride, a phenomenon analogous to calcium chloride hypersensitivities observed in other cngc mutants. A heat stress was found to increase concentrations of 3',5'-cyclic guanyl monophosphate in both pollen and leaves, as detected using an antibody-binding assay. A quantitative PCR analysis indicates that cngc16 mutant pollen have attenuated expression of several heat-stress response genes, including two heat shock transcription factor genes, HsfA2 and HsfB1. Together, these results provide evidence for a heat stress response pathway in pollen that connects a cyclic nucleotide signal, a Ca(2+)-permeable ion channel, and a signaling network that activates a downstream transcriptional heat shock response.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Arabidopsis/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Tubo Polínico/genética , Pólen/genética , Adaptação Fisiológica/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Cloreto de Cálcio/farmacologia , GMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Secas , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Dados de Sequência Molecular , Mutação , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Reprodução/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Exp Eye Res ; 115: 113-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23810808

RESUMO

Proliferative vitreo retinopathy (PVR) is associated with extracellular matrix membrane (ECM) formation on the neural retina and disruption of the multilayered retinal architecture leading to distorted vision and blindness. During disease progression in PVR, retinal pigmented epithelial cells (RPE) lose cell-cell adhesion, undergo epithelial-to-mesenchymal transition (EMT), and deposit ECM leading to tissue fibrosis. The EMT process is mediated via exposure to vitreous cytokines and growth factors such as TGF-ß2. Previous studies have shown that Na,K-ATPase is required for maintaining a normal polarized epithelial phenotype and that decreased Na,K-ATPase function and subunit levels are associated with TGF-ß1-mediated EMT in kidney cells. In contrast to the basolateral localization of Na,K-ATPase in most epithelia, including kidney, Na,K-ATPase is found on the apical membrane in RPE cells. We now show that EMT is also associated with altered Na,K-ATPase expression in RPE cells. TGF-ß2 treatment of ARPE-19 cells resulted in a time-dependent decrease in Na,K-ATPase ß1 mRNA and protein levels while Na,K-ATPase α1 levels, Na,K-ATPase activity, and intracellular sodium levels remained largely unchanged. In TGF-ß2-treated cells reduced Na,K-ATPase ß1 mRNA inversely correlated with HIF-1α levels and analysis of the Na,K-ATPase ß1 promoter revealed a putative hypoxia response element (HRE). HIF-1α bound to the Na,K-ATPase ß1 promoter and inhibiting the activity of HIF-1α blocked the TGF-ß2 mediated Na,K-ATPase ß1 decrease suggesting that HIF-1α plays a potential role in Na,K-ATPase ß1 regulation during EMT in RPE cells. Furthermore, knockdown of Na,K-ATPase ß1 in ARPE-19 cells was associated with a change in cell morphology from epithelial to mesenchymal and induction of EMT markers such as α-smooth muscle actin and fibronectin, suggesting that loss of Na,K-ATPase ß1 is a potential contributor to TGF-ß2-mediated EMT in RPE cells.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Epitélio Pigmentado da Retina/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/fisiologia , Epitélio/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Immunoblotting , Microscopia Confocal , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retinaldeído/metabolismo , Proteína Smad3/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Transfecção , Fator de Crescimento Transformador beta1/farmacologia
17.
Plant Reprod ; 36(3): 263-272, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37222783

RESUMO

During angiosperm sexual reproduction, pollen tubes must penetrate through multiple cell types in the pistil to mediate successful fertilization. Although this process is highly choreographed and requires complex chemical and mechanical signaling to guide the pollen tube to its destination, aspects of our understanding of pollen tube penetration through the pistil are incomplete. Our previous work demonstrated that disruption of the Arabidopsis thaliana O-FUCOSYLTRANSFERASE1 (OFT1) gene resulted in decreased pollen tube penetration through the stigma-style interface. Here, we demonstrate that second site mutations of Arabidopsis GALACTURONOSYLTRANSFERASE 14 (GAUT14) effectively suppress the phenotype of oft1 mutants, partially restoring silique length, seed set, pollen transmission, and pollen tube penetration deficiencies in navigating the female reproductive tract. These results suggest that disruption of pectic homogalacturonan (HG) synthesis can alleviate the penetrative defects associated with the oft1 mutant and may implicate pectic HG deposition in the process of pollen tube penetration through the stigma-style interface in Arabidopsis. These results also support a model in which OFT1 function directly or indirectly modifies structural features associated with the cell wall, with the loss of oft1 leading to an imbalance in the wall composition that can be compensated for by a reduction in pectic HG deposition.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Tubo Polínico/genética , Tubo Polínico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pólen/genética
18.
Am J Physiol Lung Cell Mol Physiol ; 302(11): L1150-8, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22345575

RESUMO

Diminished Na,K-ATPase expression has been reported in several carcinomas and has been linked to tumor progression. However, few studies have determined whether Na,K-ATPase function and expression are altered in lung malignancies. Because cigarette smoke (CS) is a major factor underlying lung carcinogenesis and progression, we investigated whether CS affects Na,K-ATPase activity and expression in lung cell lines. Cells exposed to CS in vitro showed a reduction of Na,K-ATPase activity. We detected the presence of reactive oxygen species (ROS) in cells exposed to CS before Na,K-ATPase inhibition, and neutralization of ROS restored Na,K-ATPase activity. We further determined whether Na,K-ATPase expression correlated with increasing grades of lung adenocarcinoma and survival of patients with smoking history. Immunohistochemical analysis of lung adenocarcinoma tissues revealed reduced Na,K-ATPase expression with increasing tumor grade. Using tissue microarray containing lung adenocarcinomas of patients with known smoking status, we found that high expression of Na,K-ATPase correlated with better survival. For the first time, these data demonstrate that CS is associated with loss of Na,K-ATPase function and expression in lung carcinogenesis, which might contribute to disease progression.


Assuntos
Adenocarcinoma/enzimologia , Neoplasias Pulmonares/enzimologia , Nicotiana , Fumaça/efeitos adversos , ATPase Trocadora de Sódio-Potássio/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Linhagem Celular Tumoral , Progressão da Doença , Intervalo Livre de Doença , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Gradação de Tumores , Espécies Reativas de Oxigênio/metabolismo , Fumar/efeitos adversos , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/biossíntese
19.
Sci Total Environ ; 851(Pt 1): 158101, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35987220

RESUMO

Atmospheric elemental mercury (Hg(0)) enters plant stomata, becomes oxidized, and is then transferred to annual growth rings providing an archive of air Hg(0) concentrations. To better understand the processes of Hg accumulation and translocation, the foliage of quaking aspen and Austrian pine were exposed to Hg(0), and methylmercury (MeHg) or Me198Hg via roots, in controlled exposures during the summer. Isotopic measurements demonstrated, in a laboratory setting, that the natural mass-dependent fractionation observed was the same as that measured in field studies, with the lighter isotopes being preferentially taken up by the leaves. Hg was measured in plant tissues across seasons. Aspen trees moved Hg into new growth immediately after exposure, resorbed Hg in the fall, and then distributed Hg to new growth tissues in the spring. Austrian pine did not reallocate Hg. Mercury measured in aspen leaf fractions of trees exposed to Hg(0) demonstrated that 85 % of Hg was in the cell wall. It was also found that redox-active molecules, such as H2O2, could potentiate the release of cell wall-bound Hg from aspen leaves, providing a potential mechanism for remobilization. Regardless of the mechanism, the ability of aspen to reallocate Hg to new tissues indicates that Hg distribution in tree rings from aspen do not provide a reliable record of yearly changes in atmospheric Hg(0).


Assuntos
Mercúrio , Compostos de Metilmercúrio , Pinus , Monitoramento Ambiental , Peróxido de Hidrogênio , Isótopos , Mercúrio/análise , Isótopos de Mercúrio
20.
Plant Physiol ; 154(3): 1158-71, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20837703

RESUMO

Calcium (Ca(2+)) signals regulate many aspects of plant development, including a programmed cell death pathway that protects plants from pathogens (hypersensitive response). Cytosolic Ca(2+) signals result from a combined action of Ca(2+) influx through channels and Ca(2+) efflux through pumps and cotransporters. Plants utilize calmodulin-activated Ca(2+) pumps (autoinhibited Ca(2+)-ATPase [ACA]) at the plasma membrane, endoplasmic reticulum, and vacuole. Here, we show that a double knockout mutation of the vacuolar Ca(2+) pumps ACA4 and ACA11 in Arabidopsis (Arabidopsis thaliana) results in a high frequency of hypersensitive response-like lesions. The appearance of macrolesions could be suppressed by growing plants with increased levels (greater than 15 mm) of various anions, providing a method for conditional suppression. By removing plants from a conditional suppression, lesion initials were found to originate primarily in leaf mesophyll cells, as detected by aniline blue staining. Initiation and spread of lesions could also be suppressed by disrupting the production or accumulation of salicylic acid (SA), as shown by combining aca4/11 mutations with a sid 2 (for salicylic acid induction-deficient2) mutation or expression of the SA degradation enzyme NahG. This indicates that the loss of the vacuolar Ca(2+) pumps by itself does not cause a catastrophic defect in ion homeostasis but rather potentiates the activation of a SA-dependent programmed cell death pathway. Together, these results provide evidence linking the activity of the vacuolar Ca(2+) pumps to the control of a SA-dependent programmed cell death pathway in plants.


Assuntos
Apoptose , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , ATPases Transportadoras de Cálcio/metabolismo , Ácido Salicílico/metabolismo , Vacúolos/enzimologia , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Sinalização do Cálcio , ATPases Transportadoras de Cálcio/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Mutação , Pseudomonas syringae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA