Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Rep ; 42(9): 113106, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37676760

RESUMO

Cardiac lymphatic vessels play important roles in fluid homeostasis, inflammation, disease, and regeneration of the heart. The developing cardiac lymphatics in human fetal hearts are closely associated with coronary arteries, similar to those in zebrafish hearts. We identify a population of cardiac lymphatic endothelial cells (LECs) that reside in the epicardium. Single-nuclei multiomic analysis of the human fetal heart reveals the plasticity and heterogeneity of the cardiac endothelium. Furthermore, we find that VEGFC is highly expressed in arterial endothelial cells and epicardium-derived cells, providing a molecular basis for the arterial association of cardiac lymphatic development. Using a cell-type-specific integrative analysis, we identify a population of cardiac lymphatic endothelial cells marked by the PROX1 and the lymphangiocrine RELN and enriched in binding motifs of erythroblast transformation specific (ETS) variant (ETV) transcription factors. We report the in vivo molecular characterization of human cardiac lymphatics and provide a valuable resource to understand fetal heart development.

2.
Nat Commun ; 13(1): 7704, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513650

RESUMO

The epicardium, a mesothelial cell tissue that encompasses vertebrate hearts, supports heart regeneration after injury through paracrine effects and as a source of multipotent progenitors. However, the progenitor state in the adult epicardium has yet to be defined. Through single-cell RNA-sequencing of isolated epicardial cells from uninjured and regenerating adult zebrafish hearts, we define the epithelial and mesenchymal subsets of the epicardium. We further identify a transiently activated epicardial progenitor cell (aEPC) subpopulation marked by ptx3a and col12a1b expression. Upon cardiac injury, aEPCs emerge from the epithelial epicardium, migrate to enclose the wound, undergo epithelial-mesenchymal transition (EMT), and differentiate into mural cells and pdgfra+hapln1a+ mesenchymal epicardial cells. These EMT and differentiation processes are regulated by the Tgfß pathway. Conditional ablation of aEPCs blocks heart regeneration through reduced nrg1 expression and mesenchymal cell number. Our findings identify a transient progenitor population of the adult epicardium that is indispensable for heart regeneration and highlight it as a potential target for enhancing cardiac repair.


Assuntos
Traumatismos Cardíacos , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Coração/fisiologia , Pericárdio , Células-Tronco/metabolismo , Traumatismos Cardíacos/genética , Transição Epitelial-Mesenquimal/genética , Proteoglicanas/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
BMC Genomics ; 12: 24, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21226904

RESUMO

BACKGROUND: The epigenetic regulator Histone Deacetylase 1 (Hdac1) is required for specification and patterning of neurones and myelinating glia during development of the vertebrate central nervous system (CNS). This co-ordinating function for Hdac1 is evolutionarily conserved in zebrafish and mouse, but the mechanism of action of Hdac1 in the developing CNS is not well-understood. RESULTS: A genome-wide comparative analysis of the transcriptomes of Hdac1-deficient and wild-type zebrafish embryos was performed, which identified an extensive programme of gene expression that is regulated by Hdac1 in the developing embryo. Using time-resolved expression profiling of embryos, we then identified a small subset of 54 genes within the Hdac1-regulated transcriptome that specifically exhibit robust and sustained Hdac1-dependent expression from early neurogenesis onwards. 18 of these 54 stringently Hdac1-regulated genes encode DNA-binding transcription factors that are implicated in promoting neuronal specification and CNS patterning, including the proneural bHLH proteins Ascl1a and Ascl1b, as well as Neurod4 and Neurod. Relatively few genes are strongly repressed by Hdac1 but expression of the Notch target gene her6 is attenuated by Hdac1 in specific sub-regions of the developing CNS, from early stages of neurogenesis onwards. Selected members of the stringently Hdac1-regulated group of genes were tested for Hdac1 binding to their promoter-proximal cis-regulatory elements. Surprisingly, we found that Hdac1 is specifically and stably associated with DNA sequences within the promoter region of ascl1b during neurogenesis, and that this Hdac1-ascl1b interaction is abolished in hdac1 mutant embryos. CONCLUSIONS: We conclude that Hdac1 regulates histone acetylation and methylation in the developing zebrafish embryo and promotes the sustained, co-ordinate transcription of a small set of transcription factor genes that control expansion and diversification of cell fates within the developing CNS. Our in vivo chromatin immunoprecipitation results also suggest a specific function for Hdac1 in directly regulating transcription of a key member of this group of genes, ascl1b, from the beginning of neurogenesis onwards. Taken together, our observations indicate a novel role for Hdac1 as a positive regulator of gene transcription during development of the vertebrate CNS, in addition to its more well-established function in transcriptional repression.


Assuntos
Embrião não Mamífero/enzimologia , Embrião não Mamífero/metabolismo , Histona Desacetilase 1/metabolismo , Neurogênese/fisiologia , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Histona Desacetilase 1/genética , Neurogênese/genética , Transcrição Gênica/genética , Peixe-Zebra/genética
4.
J Cardiovasc Dev Dis ; 8(2)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669620

RESUMO

Heart disease remains the single largest cause of death in developed countries, and novel therapeutic interventions are desperately needed to alleviate this growing burden. The cardiac lymphatic system is the long-overlooked counterpart of the coronary blood vasculature, but its important roles in homeostasis and disease are becoming increasingly apparent. Recently, the cardiac lymphatic vasculature in zebrafish has been described and its role in supporting the potent regenerative response of zebrafish heart tissue investigated. In this review, we discuss these findings in the wider context of lymphatic development, evolution and the promise of this system to open new therapeutic avenues to treat myocardial infarction and other cardiopathologies.

5.
Dev Cell ; 33(4): 442-54, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-26017769

RESUMO

Interruption of the coronary blood supply severely impairs heart function with often fatal consequences for patients. However, the formation and maturation of these coronary vessels is not fully understood. Here we provide a detailed analysis of coronary vessel development in zebrafish. We observe that coronary vessels form in zebrafish by angiogenic sprouting of arterial cells derived from the endocardium at the atrioventricular canal. Endothelial cells express the CXC-motif chemokine receptor Cxcr4a and migrate to vascularize the ventricle under the guidance of the myocardium-expressed ligand Cxcl12b. cxcr4a mutant zebrafish fail to form a vascular network, whereas ectopic expression of Cxcl12b ligand induces coronary vessel formation. Importantly, cxcr4a mutant zebrafish fail to undergo heart regeneration following injury. Our results suggest that chemokine signaling has an essential role in coronary vessel formation by directing migration of endocardium-derived endothelial cells. Poorly developed vasculature in cxcr4a mutants likely underlies decreased regenerative potential in adults.


Assuntos
Animais Geneticamente Modificados/crescimento & desenvolvimento , Quimiocinas CXC/metabolismo , Vasos Coronários/crescimento & desenvolvimento , Embrião não Mamífero/metabolismo , Neovascularização Fisiológica , Receptores CXCR4/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Angiografia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Vasos Coronários/embriologia , Embrião não Mamífero/citologia , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Coração/fisiologia , Microscopia Confocal , Organogênese/fisiologia , Regeneração/fisiologia , Transdução de Sinais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
6.
Dis Model Mech ; 5(6): 773-84, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22730455

RESUMO

The availability of animal models of epileptic seizures provides opportunities to identify novel anticonvulsants for the treatment of people with epilepsy. We found that exposure of 2-day-old zebrafish embryos to the convulsant agent pentylenetetrazole (PTZ) rapidly induces the expression of synaptic-activity-regulated genes in the CNS, and elicited vigorous episodes of calcium (Ca(2+)) flux in muscle cells as well as intense locomotor activity. We then screened a library of ∼2000 known bioactive small molecules and identified 46 compounds that suppressed PTZ-inducedtranscription of the synaptic-activity-regulated gene fos in 2-day-old (2 dpf) zebrafish embryos. Further analysis of a subset of these compounds, which included compounds with known and newly identified anticonvulsant properties, revealed that they exhibited concentration-dependent inhibition of both locomotor activity and PTZ-induced fos transcription, confirming their anticonvulsant characteristics. We conclude that this in situ hybridisation assay for fos transcription in the zebrafish embryonic CNS is a robust, high-throughput in vivo indicator of the neural response to convulsant treatment and lends itself well to chemical screening applications. Moreover, our results demonstrate that suppression of PTZ-induced fos expression provides a sensitive means of identifying compounds with anticonvulsant activities.


Assuntos
Anticonvulsivantes/análise , Anticonvulsivantes/uso terapêutico , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Peixe-Zebra/fisiologia , Animais , Anticonvulsivantes/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/patologia , Avaliação Pré-Clínica de Medicamentos , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/patologia , Epilepsia/genética , Epilepsia/patologia , Epilepsia/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hibridização In Situ , Larva/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Músculos/efeitos dos fármacos , Músculos/embriologia , Músculos/metabolismo , Músculos/patologia , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Pentilenotetrazol , Picrotoxina/toxicidade , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Peixe-Zebra/embriologia , Peixe-Zebra/genética
7.
Int J Dev Biol ; 55(6): 597-602, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21948707

RESUMO

The rate and pattern of neurogenesis in the developing vertebrate nervous system is controlled by a complex interplay of intercellular signalling pathways and transcriptional control mechanisms. In the zebrafish hindbrain, Fgf20a promotes transcription of the gene encoding the ETS-domain transcription factor Erm in the non-neurogenic centres of rhombomeres. Here, we demonstrate that the epigenetic regulator, Histone Deacetylase 1 (Hdac1) and the Notch signalling pathway have opposing functions in regulating expression of both erm and fgf20a in the zebrafish hindbrain. Our results show that Hdac1 is required for expression of erm and fgf20a in rhombomeres, and that the Hdac1-dependent expression of these two genes is attenuated in rhombomere boundary regions by Notch signalling activity, thereby restricting erm and fgf20a transcripts to narrow stripes of cells at rhombomere centres.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Histona Desacetilase 1/metabolismo , Neurogênese , Receptores Notch/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Embrião não Mamífero/metabolismo , Fatores de Crescimento de Fibroblastos/biossíntese , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Sistema Nervoso/embriologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Transcrição Gênica , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA