Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 47(D1): D941-D947, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30371878

RESUMO

COSMIC, the Catalogue Of Somatic Mutations In Cancer (https://cancer.sanger.ac.uk) is the most detailed and comprehensive resource for exploring the effect of somatic mutations in human cancer. The latest release, COSMIC v86 (August 2018), includes almost 6 million coding mutations across 1.4 million tumour samples, curated from over 26 000 publications. In addition to coding mutations, COSMIC covers all the genetic mechanisms by which somatic mutations promote cancer, including non-coding mutations, gene fusions, copy-number variants and drug-resistance mutations. COSMIC is primarily hand-curated, ensuring quality, accuracy and descriptive data capture. Building on our manual curation processes, we are introducing new initiatives that allow us to prioritize key genes and diseases, and to react more quickly and comprehensively to new findings in the literature. Alongside improvements to the public website and data-download systems, new functionality in COSMIC-3D allows exploration of mutations within three-dimensional protein structures, their protein structural and functional impacts, and implications for druggability. In parallel with COSMIC's deep and broad variant coverage, the Cancer Gene Census (CGC) describes a curated catalogue of genes driving every form of human cancer. Currently describing 719 genes, the CGC has recently introduced functional descriptions of how each gene drives disease, summarized into the 10 cancer Hallmarks.


Assuntos
Bases de Dados de Ácidos Nucleicos , Mutação , Neoplasias/genética , Genes , Humanos , Conformação Proteica
2.
Nucleic Acids Res ; 45(D1): D777-D783, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899578

RESUMO

COSMIC, the Catalogue of Somatic Mutations in Cancer (http://cancer.sanger.ac.uk) is a high-resolution resource for exploring targets and trends in the genetics of human cancer. Currently the broadest database of mutations in cancer, the information in COSMIC is curated by expert scientists, primarily by scrutinizing large numbers of scientific publications. Over 4 million coding mutations are described in v78 (September 2016), combining genome-wide sequencing results from 28 366 tumours with complete manual curation of 23 489 individual publications focused on 186 key genes and 286 key fusion pairs across all cancers. Molecular profiling of large tumour numbers has also allowed the annotation of more than 13 million non-coding mutations, 18 029 gene fusions, 187 429 genome rearrangements, 1 271 436 abnormal copy number segments, 9 175 462 abnormal expression variants and 7 879 142 differentially methylated CpG dinucleotides. COSMIC now details the genetics of drug resistance, novel somatic gene mutations which allow a tumour to evade therapeutic cancer drugs. Focusing initially on highly characterized drugs and genes, COSMIC v78 contains wide resistance mutation profiles across 20 drugs, detailing the recurrence of 301 unique resistance alleles across 1934 drug-resistant tumours. All information from the COSMIC database is available freely on the COSMIC website.


Assuntos
Bases de Dados Genéticas , Mutação , Neoplasias/genética , Biologia Computacional/métodos , Resistencia a Medicamentos Antineoplásicos/genética , Genoma Humano , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Humanos , Navegador
3.
BMC Bioinformatics ; 16: 56, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25879798

RESUMO

BACKGROUND: Ontology-based enrichment analysis aids in the interpretation and understanding of large-scale biological data. Ontologies are hierarchies of biologically relevant groupings. Using ontology annotations, which link ontology classes to biological entities, enrichment analysis methods assess whether there is a significant over or under representation of entities for ontology classes. While many tools exist that run enrichment analysis for protein sets annotated with the Gene Ontology, there are only a few that can be used for small molecules enrichment analysis. RESULTS: We describe BiNChE, an enrichment analysis tool for small molecules based on the ChEBI Ontology. BiNChE displays an interactive graph that can be exported as a high-resolution image or in network formats. The tool provides plain, weighted and fragment analysis based on either the ChEBI Role Ontology or the ChEBI Structural Ontology. CONCLUSIONS: BiNChE aids in the exploration of large sets of small molecules produced within Metabolomics or other Systems Biology research contexts. The open-source tool provides easy and highly interactive web access to enrichment analysis with the ChEBI ontology tool and is additionally available as a standalone library.


Assuntos
Ontologias Biológicas , Bases de Dados de Compostos Químicos , Preparações Farmacêuticas/química , Bibliotecas de Moléculas Pequenas/química , Software , Internet
4.
Nucleic Acids Res ; 41(Database issue): D456-63, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23180789

RESUMO

ChEBI (http://www.ebi.ac.uk/chebi) is a database and ontology of chemical entities of biological interest. Over the past few years, ChEBI has continued to grow steadily in content, and has added several new features. In addition to incorporating all user-requested compounds, our annotation efforts have emphasized immunology, natural products and metabolites in many species. All database entries are now 'is_a' classified within the ontology, meaning that all of the chemicals are available to semantic reasoning tools that harness the classification hierarchy. We have completely aligned the ontology with the Open Biomedical Ontologies (OBO) Foundry-recommended upper level Basic Formal Ontology. Furthermore, we have aligned our chemical classification with the classification of chemical-involving processes in the Gene Ontology (GO), and as a result of this effort, the majority of chemical-involving processes in GO are now defined in terms of the ChEBI entities that participate in them. This effort necessitated incorporating many additional biologically relevant compounds. We have incorporated additional data types including reference citations, and the species and component for metabolites. Finally, our website and web services have had several enhancements, most notably the provision of a dynamic new interactive graph-based ontology visualization.


Assuntos
Fenômenos Bioquímicos , Bases de Dados de Compostos Químicos , Gráficos por Computador , Internet , Interface Usuário-Computador
5.
mBio ; 7(6)2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27881553

RESUMO

Onchocerciasis (river blindness) is a neglected tropical disease that has been successfully targeted by mass drug treatment programs in the Americas and small parts of Africa. Achieving the long-term goal of elimination of onchocerciasis, however, requires additional tools, including drugs, vaccines, and biomarkers of infection. Here, we describe the transcriptome and proteome profiles of the major vector and the human host stages (L1, L2, L3, molting L3, L4, adult male, and adult female) of Onchocerca volvulus along with the proteome of each parasitic stage and of its Wolbachia endosymbiont (wOv). In so doing, we have identified stage-specific pathways important to the parasite's adaptation to its human host during its early development. Further, we generated a protein array that, when screened with well-characterized human samples, identified novel diagnostic biomarkers of O. volvulus infection and new potential vaccine candidates. This immunomic approach not only demonstrates the power of this postgenomic discovery platform but also provides additional tools for onchocerciasis control programs. IMPORTANCE: The global onchocerciasis (river blindness) elimination program will have to rely on the development of new tools (drugs, vaccines, biomarkers) to achieve its goals by 2025. As an adjunct to the completed genomic sequencing of O. volvulus, we used a comprehensive proteomic and transcriptomic profiling strategy to gain a comprehensive understanding of both the vector-derived and human host-derived parasite stages. In so doing, we have identified proteins and pathways that enable novel drug targeting studies and the discovery of novel vaccine candidates, as well as useful biomarkers of active infection.


Assuntos
Onchocerca volvulus/crescimento & desenvolvimento , Onchocerca volvulus/genética , Proteoma , Simbiose , Transcriptoma , Wolbachia/crescimento & desenvolvimento , Wolbachia/genética , Animais , Onchocerca volvulus/química , Wolbachia/química
6.
Nat Microbiol ; 2: 16216, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27869790

RESUMO

Human onchocerciasis is a serious neglected tropical disease caused by the filarial nematode Onchocerca volvulus that can lead to blindness and chronic disability. Control of the disease relies largely on mass administration of a single drug, and the development of new drugs and vaccines depends on a better knowledge of parasite biology. Here, we describe the chromosomes of O. volvulus and its Wolbachia endosymbiont. We provide the highest-quality sequence assembly for any parasitic nematode to date, giving a glimpse into the evolution of filarial parasite chromosomes and proteomes. This resource was used to investigate gene families with key functions that could be potentially exploited as targets for future drugs. Using metabolic reconstruction of the nematode and its endosymbiont, we identified enzymes that are likely to be essential for O. volvulus viability. In addition, we have generated a list of proteins that could be targeted by Federal-Drug-Agency-approved but repurposed drugs, providing starting points for anti-onchocerciasis drug development.


Assuntos
Genoma Helmíntico , Onchocerca volvulus/genética , Oncocercose Ocular/parasitologia , Animais , Genoma Bacteriano , Wolbachia/genética
7.
Nat Genet ; 48(3): 299-307, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26829753

RESUMO

Soil-transmitted nematodes, including the Strongyloides genus, cause one of the most prevalent neglected tropical diseases. Here we compare the genomes of four Strongyloides species, including the human pathogen Strongyloides stercoralis, and their close relatives that are facultatively parasitic (Parastrongyloides trichosuri) and free-living (Rhabditophanes sp. KR3021). A significant paralogous expansion of key gene families--families encoding astacin-like and SCP/TAPS proteins--is associated with the evolution of parasitism in this clade. Exploiting the unique Strongyloides life cycle, we compare the transcriptomes of the parasitic and free-living stages and find that these same gene families are upregulated in the parasitic stages, underscoring their role in nematode parasitism.


Assuntos
Genômica , Strongyloides/genética , Estrongiloidíase/genética , Simbiose/genética , Animais , Evolução Biológica , Humanos , Estágios do Ciclo de Vida/genética , Strongyloides/patogenicidade , Estrongiloidíase/parasitologia , Transcriptoma/genética
8.
Genome Biol ; 15(11): 510, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25413302

RESUMO

BACKGROUND: Sparganosis is an infection with a larval Diphyllobothriidea tapeworm. From a rare cerebral case presented at a clinic in the UK, DNA was recovered from a biopsy sample and used to determine the causative species as Spirometra erinaceieuropaei through sequencing of the cox1 gene. From the same DNA, we have produced a draft genome, the first of its kind for this species, and used it to perform a comparative genomics analysis and to investigate known and potential tapeworm drug targets in this tapeworm. RESULTS: The 1.26 Gb draft genome of S. erinaceieuropaei is currently the largest reported for any flatworm. Through investigation of ß-tubulin genes, we predict that S. erinaceieuropaei larvae are insensitive to the tapeworm drug albendazole. We find that many putative tapeworm drug targets are also present in S. erinaceieuropaei, allowing possible cross application of new drugs. In comparison to other sequenced tapeworm species we observe expansion of protease classes, and of Kuntiz-type protease inhibitors. Expanded gene families in this tapeworm also include those that are involved in processes that add post-translational diversity to the protein landscape, intracellular transport, transcriptional regulation and detoxification. CONCLUSIONS: The S. erinaceieuropaei genome begins to give us insight into an order of tapeworms previously uncharacterized at the genome-wide level. From a single clinical case we have begun to sketch a picture of the characteristics of these organisms. Finally, our work represents a significant technological achievement as we present a draft genome sequence of a rare tapeworm, and from a small amount of starting material.


Assuntos
Diphyllobothrium/genética , Genoma , Esparganose/genética , Spirometra/genética , Animais , Sequência de Bases , Biópsia , Encéfalo/parasitologia , Encéfalo/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Esparganose/parasitologia , Spirometra/parasitologia , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA