Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 286(48): 41510-41519, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21953464

RESUMO

Inhibition of acetyl-CoA carboxylases (ACCs), a crucial enzyme for fatty acid metabolism, has been shown to promote fatty acid oxidation and reduce body fat in animal models. Therefore, ACCs are attractive targets for structure-based inhibitor design, particularly the carboxyltransferase (CT) domain, which is the primary site for inhibitor interaction. We have cloned, expressed, and purified the CT domain of human ACC2 using baculovirus-mediated insect cell expression system. However, attempts to crystallize the human ACC2 CT domain have not been successful in our hands. Hence, we have been using the available crystal structure of yeast CT domain to design human ACC inhibitors. Unfortunately, as the selectivity of the lead series has increased against the full-length human enzyme, the potency against the yeast enzyme has decreased significantly. This loss of potency against the yeast enzyme correlated with a complete lack of binding of the human-specific compounds to crystals of the yeast CT domain. Here, we address this problem by converting nine key active site residues of the yeast CT domain to the corresponding human residues. The resulting humanized yeast ACC-CT (yCT-H9) protein exhibits biochemical and biophysical properties closer to the human CT domain and binding to human specific compounds. We report high resolution crystal structures of yCT-H9 complexed with inhibitors that show a preference for the human CT domain. These structures offer insights that explain the species selectivity of ACC inhibitors and may guide future drug design programs.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Acetil-CoA Carboxilase/química , Domínio Catalítico , Inibidores Enzimáticos/química , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/química , Acetil-CoA Carboxilase/genética , Animais , Linhagem Celular , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Especificidade da Espécie , Spodoptera , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
2.
Recent Pat Cardiovasc Drug Discov ; 2(3): 162-80, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18221116

RESUMO

Inhibition of acetyl-CoA carboxylase (ACC), with its resultant inhibition of fatty acid synthesis and stimulation of fatty acid oxidation, has the potential to favorably affect, in a concerted manner, a multitude of the cardiometabolic risk factors associated with diabetes, obesity, and the metabolic syndrome. Studies in ACC2 knockout mice and in experimental animals treated with isozyme-specific antisense oligonucleotides or with isozyme-nonselective ACC inhibitors have demonstrated the potential for treating metabolic syndrome through this modality. Co-crystallization of the biotin carboxylase and carboxyltransferase domains of eukaryotic ACC in the presence of substrates and inhibitors has revealed characteristics of the catalytic center that can be exploited in drug discovery. A variety of structurally diverse, mechanistically distinct classes of ACC inhibitors have been disclosed in the scientific and patent literature. Isozyme-nonselective ACC inhibitors may provide the optimal therapeutic potential. However, demonstration of the full potential of isozyme-selective inhibitors, once identified, should reveal advantages and liabilities associated with single isozyme inhibition.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Acetil-CoA Carboxilase/metabolismo , Animais , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/enzimologia , Desenho de Fármacos , Inibidores Enzimáticos/uso terapêutico , Cardiopatias/tratamento farmacológico , Cardiopatias/enzimologia , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/enzimologia , Camundongos , Obesidade/tratamento farmacológico , Obesidade/enzimologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA