Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Mol Psychiatry ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609585

RESUMO

The hippocampus is crucial for acquiring and retrieving episodic and contextual memories. In previous studies, the inactivation of dentate gyrus (DG) neurons by chemogenetic- and optogenetic-mediated hyperpolarization led to opposing conclusions about DG's role in memory retrieval. One study used Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-mediated clozapine N-oxide (CNO)-induced hyperpolarization and reported that the previously formed memory was erased, thus concluding that denate gyrus is needed for memory maintenance. The other study used optogenetic with halorhodopsin induced hyperpolarization and reported and dentate gyrus is needed for memory retrieval. We hypothesized that this apparent discrepancy could be due to the length of hyperpolarization in previous studies; minutes by optogenetics and several hours by DREADD/CNO. Since hyperpolarization interferes with anterograde and retrograde neuronal signaling, it is possible that the memory engram in the dentate gyrus and the entorhinal to hippocampus trisynaptic circuit was erased by long-term, but not with short-term hyperpolarization. We developed and applied an advanced chemogenetic technology to selectively silence synaptic output by blocking neurotransmitter release without hyperpolarizing DG neurons to explore this apparent discrepancy. We performed in vivo electrophysiology during trace eyeblink in a rabbit model of associative learning. Our work shows that the DG output is required for memory retrieval. Based on previous and recent findings, we propose that the actively functional anterograde and retrograde neuronal signaling is necessary to preserve synaptic memory engrams along the entorhinal cortex to the hippocampal trisynaptic circuit.

2.
Brain ; 147(5): 1899-1913, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38242545

RESUMO

Aberrant cholesterol metabolism causes neurological disease and neurodegeneration, and mitochondria have been linked to perturbed cholesterol homeostasis via the study of pathological mutations in the ATAD3 gene cluster. However, whether the cholesterol changes were compensatory or contributory to the disorder was unclear, and the effects on cell membranes and the wider cell were also unknown. Using patient-derived cells, we show that cholesterol perturbation is a conserved feature of pathological ATAD3 variants that is accompanied by an expanded lysosome population containing membrane whorls characteristic of lysosomal storage diseases. Lysosomes are also more numerous in Drosophila neural progenitor cells expressing mutant Atad3, which exhibit abundant membrane-bound cholesterol aggregates, many of which co-localize with lysosomes. By subjecting the Drosophila Atad3 mutant to nutrient restriction and cholesterol supplementation, we show that the mutant displays heightened cholesterol dependence. Collectively, these findings suggest that elevated cholesterol enhances tolerance to pathological ATAD3 variants; however, this comes at the cost of inducing cholesterol aggregation in membranes, which lysosomal clearance only partly mitigates.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Colesterol , Lisossomos , Proteínas de Membrana , Mutação , Animais , Colesterol/metabolismo , Humanos , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Drosophila , Membrana Celular/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
3.
Cereb Cortex ; 31(1): 281-300, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32885230

RESUMO

It is assumed that the claustrum (CL) is involved in sensorimotor integration and cognitive processes. We recorded the firing activity of identified CL neurons during classical eyeblink conditioning in rabbits, using a delay paradigm in which a tone was presented as conditioned stimulus (CS), followed by a corneal air puff as unconditioned stimulus (US). Neurons were identified by their activation from motor (MC), cingulate (CC), and medial prefrontal (mPFC) cortices. CL neurons were rarely activated by single stimuli of any modality. In contrast, their firing was significantly modulated during the first sessions of paired CS/US presentations, but not in well-trained animals. Neuron firing rates did not correlate with the kinematics of conditioned responses (CRs). CL local field potentials (LFPs) changed their spectral power across learning and presented well-differentiated CL-mPFC/CL-MC network dynamics, as shown by crossfrequency spectral measurements. CL electrical stimulation did not evoke eyelid responses, even in trained animals. Silencing of synaptic transmission of CL neurons by the vINSIST method delayed the acquisition of CRs but did not affect their presentation rate. The CL plays an important role in the acquisition of associative learning, mostly in relation to the novelty of CS/US association, but not in the expression of CRs.


Assuntos
Potenciais de Ação/fisiologia , Cognição/fisiologia , Condicionamento Clássico/fisiologia , Pálpebras/fisiologia , Animais , Piscadela/fisiologia , Condicionamento Palpebral/fisiologia , Estimulação Elétrica/métodos , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Coelhos
4.
J Lipid Res ; 58(12): 2239-2254, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28298292

RESUMO

Alzheimer's disease (AD) is the most common form of dementia in older adults. Currently, there is no cure for AD. The hallmark of AD is the accumulation of extracellular amyloid plaques composed of amyloid-ß (Aß) peptides (especially Aß1-42) and neurofibrillary tangles, composed of hyperphosphorylated tau and accompanied by chronic neuroinflammation. Aß peptides are derived from the amyloid precursor protein (APP). The oligomeric form of Aß peptides is probably the most neurotoxic species; its accumulation eventually forms the insoluble and aggregated amyloid plaques. ApoE is the major apolipoprotein of the lipoprotein(s) present in the CNS. ApoE has three alleles, of which the Apoe4 allele constitutes the major risk factor for late-onset AD. Here we describe the complex relationship between ApoE4, oligomeric Aß peptides, and cholesterol homeostasis. The review consists of four parts: 1) key elements involved in cellular cholesterol metabolism and regulation; 2) key elements involved in intracellular cholesterol trafficking; 3) links between ApoE4, Aß peptides, and disturbance of cholesterol homeostasis in the CNS; 4) potential lipid-based therapeutic targets to treat AD. At the end, we recommend several research topics that we believe would help in better understanding the connection between cholesterol and AD for further investigations.


Assuntos
Doença de Alzheimer/metabolismo , Apolipoproteína E4/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Emaranhados Neurofibrilares/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Apolipoproteína E4/genética , Transporte Biológico , Encéfalo/patologia , Regulação da Expressão Gênica , Homeostase/genética , Humanos , Metabolismo dos Lipídeos , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/patologia , Transdução de Sinais , Proteínas tau/genética , Proteínas tau/metabolismo
5.
Cereb Cortex ; 26(2): 647-55, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25270308

RESUMO

Activation of D4 receptors (D4Rs) has been shown to improve cognitive performance, potentially affecting synaptic strength. We investigated the D4R agonist PD 168077 (PD) in hippocampal CA1 of freely moving mice. We electrically stimulated in stratum oriens (OR) or radiatum (RAD) and evoked local field potentials (LFPs). Intraperitoneally injected PD dose-dependently and reversibly attenuated LFPs for longer time in basal (OR) than apical (RAD) dendrites. High-frequency stimulation induced LTP that was stronger and more stable in OR than RAD. LTP lasted at least 4 h during which the paired-pulse ratio remained reduced. A PD concentration not affecting synaptic transmission was sufficient to reduce LTP in OR but not in RAD. A PD concentration reducing synaptic transmission reduced the early phase LTP in OR additionally and the late phase LTP in RAD exclusively. Furthermore, cell type-specific expression of mCherry in DATCre mice generated fluorescence in dorsal CA1 that was highest in lacunosum moleculare and similar in OR/RAD, indicating that midbrain dopaminergic fibers distribute evenly in OR/RAD. Together, the D4R-mediated modulation of hippocampal synaptic transmission and plasticity is stronger in OR than RAD. This could affect information processing in CA1 neurons, since signals arriving via basal and apical afferents are distinct.


Assuntos
Dendritos/metabolismo , Hipocampo/citologia , Receptores de Dopamina D4/metabolismo , Sinapses/metabolismo , Vigília/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Análise de Variância , Animais , Benzamidas/farmacologia , Dendritos/efeitos dos fármacos , Dopaminérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Relação Dose-Resposta a Droga , Hipocampo/efeitos dos fármacos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfopiruvato Hidratase/metabolismo , Piperazinas/farmacologia , Sinapses/efeitos dos fármacos , Fatores de Tempo , Vigília/efeitos dos fármacos , Proteína Vermelha Fluorescente
6.
Proc Natl Acad Sci U S A ; 109(52): 21498-503, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23213253

RESUMO

The circadian pacemaker in the hypothalamic suprachiasmatic nucleus (SCN) is a hierarchical multioscillator system in which neuronal networks play crucial roles in expressing coherent rhythms in physiology and behavior. However, our understanding of the neuronal network is still incomplete. Intracellular calcium mediates the input signals, such as phase-resetting stimuli, to the core molecular loop involving clock genes for circadian rhythm generation and the output signals from the loop to various cellular functions, including changes in neurotransmitter release. Using a unique large-scale calcium imaging method with genetically encoded calcium sensors, we visualized intracellular calcium from the entire surface of SCN slice in culture including the regions where autonomous clock gene expression was undetectable. We found circadian calcium rhythms at a single-cell level in the SCN, which were topologically specific with a larger amplitude and more delayed phase in the ventral region than the dorsal. The robustness of the rhythm was reduced but persisted even after blocking the neuronal firing with tetrodotoxin (TTX). Notably, TTX dissociated the circadian calcium rhythms between the dorsal and ventral SCN. In contrast, a blocker of gap junctions, carbenoxolone, had only a minor effect on the calcium rhythms at both the single-cell and network levels. These results reveal the topological specificity of the circadian calcium rhythm in the SCN and the presence of coupled regional pacemakers in the dorsal and ventral regions. Neuronal firings are not necessary for the persistence of the calcium rhythms but indispensable for the hierarchical organization of rhythmicity in the SCN.


Assuntos
Cálcio/metabolismo , Ritmo Circadiano/fisiologia , Rede Nervosa/fisiologia , Núcleo Supraquiasmático/fisiologia , Animais , Carbenoxolona/farmacologia , Ritmo Circadiano/efeitos dos fármacos , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Humanos , Camundongos , Rede Nervosa/efeitos dos fármacos , Núcleo Supraquiasmático/efeitos dos fármacos , Tetrodotoxina/farmacologia
7.
Mol Ther ; 21(8): 1497-506, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23774792

RESUMO

Both genetic inactivation and pharmacological inhibition of the cholesteryl ester synthetic enzyme acyl-CoA:cholesterol acyltransferase 1 (ACAT1) have shown benefit in mouse models of Alzheimer's disease (AD). In this study, we aimed to test the potential therapeutic applications of adeno-associated virus (AAV)-mediated Acat1 gene knockdown in AD mice. We constructed recombinant AAVs expressing artificial microRNA (miRNA) sequences, which targeted Acat1 for knockdown. We demonstrated that our AAVs could infect cultured mouse neurons and glia and effectively knockdown ACAT activity in vitro. We next delivered the AAVs to mouse brains neurosurgically, and demonstrated that Acat1-targeting AAVs could express viral proteins and effectively diminish ACAT activity in vivo, without inducing appreciable inflammation. We delivered the AAVs to the brains of 10-month-old AD mice and analyzed the effects on the AD phenotype at 12 months of age. Acat1-targeting AAV delivered to the brains of AD mice decreased the levels of brain amyloid-ß and full-length human amyloid precursor protein (hAPP), to levels similar to complete genetic ablation of Acat1. This study provides support for the potential therapeutic use of Acat1 knockdown gene therapy in AD.


Assuntos
Acetil-CoA C-Acetiltransferase/genética , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , MicroRNAs/genética , Acetil-CoA C-Acetiltransferase/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Ordem dos Genes , Terapia Genética , Vetores Genéticos/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Neurônios/metabolismo , Transdução Genética
8.
Front Neurosci ; 17: 1140679, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090807

RESUMO

Developmental and epileptic encephalopathies are childhood syndromes of severe epilepsy associated with cognitive and behavioral disorders. Of note, epileptic seizures represent only a part, although substantial, of the clinical spectrum. Whether the epileptiform activity per se accounts for developmental and intellectual disabilities is still unclear. In a few cases, seizures can be alleviated by antiseizure medication (ASM). However, the major comorbid features associated remain unsolved, including psychiatric disorders such as autism-like and attention deficit hyperactivity disorder-like behavior. Not surprisingly, the number of genes known to be involved is continuously growing, and genetically engineered rodent models are valuable tools for investigating the impact of gene mutations on local and distributed brain circuits. Despite the inconsistencies and problems arising in the generation and validation of the different preclinical models, those are unique and precious tools to identify new molecular targets, and essential to provide prospects for effective therapeutics.

9.
Biol Psychiatry ; 94(10): 804-813, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37088169

RESUMO

BACKGROUND: There is little consensus and controversial evidence on anatomical alterations in the brains of people with autism spectrum disorder (ASD), due in part to the large heterogeneity present in ASD, which in turn is a major drawback for developing therapies. One strategy to characterize this heterogeneity in ASD is to cluster large-scale functional brain connectivity profiles. METHODS: A subtyping approach based on consensus clustering of functional brain connectivity patterns was applied to a population of 657 autistic individuals with quality-assured neuroimaging data. We then used high-resolution gene transcriptomic data to characterize the molecular mechanism behind each subtype by performing enrichment analysis of the set of genes showing a high spatial similarity with the profiles of functional connectivity alterations between each subtype and a group of typically developing control participants. RESULTS: Two major stable subtypes were found: subtype 1 exhibited hypoconnectivity (less average connectivity than typically developing control participants) and subtype 2, hyperconnectivity. The 2 subtypes did not differ in structural imaging metrics in any of the analyzed regions (68 cortical and 14 subcortical) or in any of the behavioral scores (including IQ, Autism Diagnostic Interview, and Autism Diagnostic Observation Schedule). Finally, only subtype 2, comprising about 43% of ASD participants, led to significant enrichments after multiple testing corrections. Notably, the dominant enrichment corresponded to excitation/inhibition imbalance, a leading well-known primary mechanism in the pathophysiology of ASD. CONCLUSIONS: Our results support a link between excitation/inhibition imbalance and functional connectivity alterations, but only in one ASD subtype, overall characterized by brain hyperconnectivity and major alterations in somatomotor and default mode networks.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem
10.
iScience ; 26(11): 108050, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37876798

RESUMO

The organization of fear memory involves the participation of multiple brain regions. However, it is largely unknown how fear memory is formed, which circuit pathways are used for "printing" memory engrams across brain regions, and the role of identified brain circuits in memory retrieval. With advanced genetic methods, we combinatorially blocked presynaptic output and manipulated N-methyl-D-aspartate receptor (NMDAR) in the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC) before and after cued fear conditioning. Further, we tagged fear-activated neurons during associative learning for optogenetic memory recall. We found that presynaptic mPFC and postsynaptic BLA NMDARs are required for fear memory formation, but not expression. Our results provide strong evidence that NMDAR-dependent synaptic plasticity drives multi-trace systems consolidation for the sequential printing of fear memory engrams from BLA to mPFC and, subsequently, to the other regions, for flexible memory retrieval.

11.
Neuroimage ; 60(1): 139-52, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22209812

RESUMO

Cognitive and behavioral functions depend on the activation of stable neuronal assemblies, i.e. distributed groups of co-active neurons within neuronal networks. It is therefore crucial to monitor distributed patterns of activity in real time with single-neuron resolution. Microelectrode recordings allow detection of coincidence between discharges of identified units at high temporal resolution, but are not able to reveal the full spatial pattern of activity in multi-cellular assemblies. Therefore, observation of such distributed sets of neurons is a stronghold of optical techniques, but the required resolution, sensitivity, and speed are still challenging current technology. Here, we report a new approach for monitoring neuronal assemblies, using memory-related network oscillations in rodent hippocampal circuits as a model. The cytosolic calcium-sensitive fluorescent protein GCaMP3.NES was expressed using recombinant adeno-associated viral (rAAV)-mediated gene transfer in CA3 pyramidal neurons of cultured mouse hippocampal slices. After 14-21 days in culture, field potential recordings revealed spontaneous occurrence of sharp wave-ripple network events during which a fraction of local neurons is coherently activated. Using a custom-built epi-fluorescence microscope we could monitor a field of view of 410 µm × 410 µm with single-neuron optical resolution (20× objective, 0.4 NA). We developed a highly sensitive and specific wavelet-based method of cell identification allowing simultaneous observation of more than 150 neurons at frame rates of up to 60 Hz. Our recording configuration and image analysis provide a tool to investigate cognition-related activity patterns in the hippocampus and other circuits.


Assuntos
Hipocampo/citologia , Hipocampo/fisiologia , Neurônios/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Neuroimagem , Reprodutibilidade dos Testes , Técnicas de Cultura de Tecidos
12.
Nat Methods ; 6(7): 527-31, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19503080

RESUMO

High spatial and temporal resolution of conditional gene expression is typically difficult to achieve in whole tissues or organisms. We synthesized two reversibly inhibited, photoactivatable ('caged') doxycycline derivatives with different membrane permeabilities for precise spatial and temporal light-controlled activation of transgenes based on the 'Tet-on' system. After incubation with caged doxycycline or caged cyanodoxycycline, we induced gene expression by local irradiation with UV light or by two-photon uncaging in diverse biological systems, including mouse organotypic brain cultures, developing mouse embryos and Xenopus laevis tadpoles. The amount of UV light needed for induction was harmless as we detected no signs of toxicity. This method allows high-resolution conditional transgene expression at different spatial scales, ranging from single cells to entire complex organisms.


Assuntos
Doxiciclina/farmacologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos da radiação , Animais , Animais Geneticamente Modificados , Doxiciclina/análogos & derivados , Doxiciclina/química , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/efeitos da radiação , Feminino , Proteínas de Fluorescência Verde/genética , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos da radiação , Larva/efeitos dos fármacos , Larva/genética , Larva/efeitos da radiação , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Fotobiologia , Gravidez , Proteínas Recombinantes/genética , Técnicas de Cultura de Tecidos , Raios Ultravioleta , Xenopus laevis/genética , Xenopus laevis/crescimento & desenvolvimento
13.
Nat Med ; 11(12): 1322-9, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16286924

RESUMO

The IkappaB kinase complex IKK is a central component of the signaling cascade that controls NF-kappaB-dependent gene transcription. So far, its function in the brain is largely unknown. Here, we show that IKK is activated in a mouse model of stroke. To investigate the function of IKK in brain ischemia we generated mice that contain a targeted deletion of Ikbkb (which encodes IKK2) in mouse neurons and mice that express a dominant inhibitor of IKK in neurons. In both lines, inhibition of IKK activity markedly reduced infarct size. In contrast, constitutive activation of IKK2 enlarged the infarct size. A selective small-molecule inhibitor of IKK mimicked the effect of genetic IKK inhibition in neurons, reducing the infarct volume and cell death in a therapeutic time window of 4.5 h. These data indicate a key function of IKK in ischemic brain damage and suggest a potential role for IKK inhibitors in stroke therapy.


Assuntos
Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/metabolismo , Neurônios/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/enzimologia , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Ensaio de Desvio de Mobilidade Eletroforética , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Ensaio de Imunoadsorção Enzimática , Deleção de Genes , Quinase I-kappa B/genética , Imidazóis/farmacologia , Immunoblotting , Imuno-Histoquímica , Citometria de Varredura a Laser , Camundongos , Neurônios/fisiologia , Quinoxalinas/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Acidente Vascular Cerebral/patologia
14.
Curr Biol ; 32(21): 4593-4606.e8, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36113471

RESUMO

Social touch is an essential component of communication. Little is known about the underlying pathways and mechanisms. Here, we discovered a novel neuronal pathway from the posterior intralaminar thalamic nucleus (PIL) to the medial preoptic area (MPOA) involved in the control of social grooming. We found that the neurons in the PIL and MPOA were naturally activated by physical contact between female rats and also by the chemogenetic stimulation of PIL neurons. The activity-dependent tagging of PIL neurons was performed in rats experiencing physical social contact. The chemogenetic activation of these neurons increased social grooming between familiar rats, as did the selective activation of the PIL-MPOA pathway. Neurons projecting from the PIL to the MPOA express the neuropeptide parathyroid hormone 2 (PTH2), and the central infusion of its receptor antagonist diminished social grooming. Finally, we showed a similarity in the anatomical organization of the PIL and the distribution of the PTH2 receptor in the MPOA between the rat and human brain. We propose that the discovered neuronal pathway facilitates physical contact with conspecifics.


Assuntos
Neuropeptídeos , Roedores , Humanos , Ratos , Feminino , Animais , Asseio Animal , Área Pré-Óptica/fisiologia , Neurônios/fisiologia , Neuropeptídeos/metabolismo
15.
Transl Psychiatry ; 10(1): 243, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694545

RESUMO

Post-traumatic stress disorder (PTSD) is a psychiatric disorder whose pathogenesis relies on a maladaptive expression of the memory for a life-threatening experience, characterized by over-consolidation, generalization, and impaired extinction, which are responsible of dramatic changes in arousal, mood, anxiety, and social behavior. Even if subjects experiencing a traumatic event during lifetime all show an acute response to the trauma, only a subset of them (susceptible) ultimately develops PTSD, meanwhile the others (resilient) fully recover after the first acute response. However, the dynamic relationships between the interacting brain circuits that might potentially link trauma-related experiences to the emergence of susceptible and resilient PTSD phenotypes in individuals is not well understood. Toward the first step to reach this goal, we have implemented our experimental PTSD model previously developed, making it suitable to differentiate between susceptible (high responders, HR) and resilient (low responders, LR) rats in terms of over-consolidation, impaired extinction, and social impairment long after trauma. Rats were exposed to five footshocks paired with social isolation. One week after trauma but before extinction, animals were tested in the Open Field and Social Interaction tasks for the identification of a predictive variable to identify susceptible and resilient animals before the possible appearance of a PTSD-like phenotype. Our findings show that exploratory activity after trauma in a novel environment is a very robust variable to predict susceptibility towards a PTSD-like phenotype. This experimental model is thus able to screen and differentiate, before extinction learning and potential therapeutic intervention, susceptible and resilient PTSD-like rats.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Animais , Ansiedade , Nível de Alerta , Modelos Animais de Doenças , Memória , Ratos
16.
Nat Commun ; 10(1): 2968, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273206

RESUMO

NMDA receptor-dependent long-term depression (LTD) in the hippocampus is a well-known form of synaptic plasticity that has been linked to different cognitive functions. The core mechanism for this form of plasticity is thought to be entirely neuronal. However, we now demonstrate that astrocytic activity drives LTD at CA3-CA1 synapses. We have found that LTD induction enhances astrocyte-to-neuron communication mediated by glutamate, and that Ca2+ signaling and SNARE-dependent vesicular release from the astrocyte are required for LTD expression. In addition, using optogenetic techniques, we show that low-frequency astrocytic activation, in the absence of presynaptic activity, is sufficient to induce postsynaptic AMPA receptor removal and LTD expression. Using cell-type-specific gene deletion, we show that astrocytic p38α MAPK is required for the increased astrocytic glutamate release and astrocyte-to-neuron communication during low-frequency stimulation. Accordingly, removal of astrocytic (but not neuronal) p38α abolishes LTD expression. Finally, this mechanism modulates long-term memory in vivo.


Assuntos
Astrócitos/enzimologia , Hipocampo/fisiologia , Memória de Longo Prazo/fisiologia , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Comportamento Animal/fisiologia , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Feminino , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Optogenética , Técnicas de Patch-Clamp , Potenciais Sinápticos/fisiologia
17.
Neuron ; 103(1): 133-146.e8, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31104950

RESUMO

Oxytocin (OT) release by axonal terminals onto the central nucleus of the amygdala exerts anxiolysis. To investigate which subpopulation of OT neurons contributes to this effect, we developed a novel method: virus-delivered genetic activity-induced tagging of cell ensembles (vGATE). With the vGATE method, we identified and permanently tagged a small subpopulation of OT cells, which, by optogenetic stimulation, strongly attenuated contextual fear-induced freezing, and pharmacogenetic silencing of tagged OT neurons impaired context-specific fear extinction, demonstrating that the tagged OT neurons are sufficient and necessary, respectively, to control contextual fear. Intriguingly, OT cell terminals of fear-experienced rats displayed enhanced glutamate release in the amygdala. Furthermore, rats exposed to another round of fear conditioning displayed 5-fold more activated magnocellular OT neurons in a novel environment than a familiar one, possibly for a generalized fear response. Thus, our results provide first evidence that hypothalamic OT neurons represent a fear memory engram.


Assuntos
Medo/fisiologia , Hipotálamo/fisiologia , Memória/fisiologia , Ocitocina/fisiologia , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologia , Animais , Meio Ambiente , Extinção Psicológica/fisiologia , Medo/psicologia , Feminino , Reação de Congelamento Cataléptica , Inativação Gênica , Ácido Glutâmico/metabolismo , Hipotálamo/citologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Optogenética , Ocitocina/genética , Ratos , Ratos Wistar
18.
Neuron ; 39(6): 911-8, 2003 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-12971892

RESUMO

While electrophysiological recordings from visually identified cell bodies or dendrites are routinely performed in cell culture and acute brain slice preparations, targeted recordings from the mammalian nervous system are currently not possible in vivo. The "blind" approach that is used instead is somewhat random and largely limited to common neuronal cell types. This approach prohibits recordings from, for example, molecularly defined and/or disrupted populations of neurons. Here we describe a method, which we call TPTP (two-photon targeted patching), that uses two-photon imaging to guide in vivo whole-cell recordings to individual, genetically labeled cortical neurons. We apply this technique to obtain recordings from genetically manipulated, parvalbumin-EGFP-positive interneurons in the somatosensory cortex. We find that both spontaneous and sensory-evoked activity patterns involve the synchronized discharge of electrically coupled interneurons. TPTP applied in vivo will therefore provide new insights into the molecular control of neuronal function at the systems level.


Assuntos
Encéfalo/fisiologia , Interneurônios/fisiologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Técnicas de Patch-Clamp/métodos , Córtex Somatossensorial/fisiologia , Animais , Encéfalo/citologia , Proteínas de Fluorescência Verde , Interneurônios/química , Interneurônios/citologia , Proteínas Luminescentes/análise , Proteínas Luminescentes/biossíntese , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Técnicas de Patch-Clamp/instrumentação , Córtex Somatossensorial/química , Córtex Somatossensorial/citologia
19.
PLoS Biol ; 2(6): e163, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15208716

RESUMO

Genetically encoded fluorescent calcium indicator proteins (FCIPs) are promising tools to study calcium dynamics in many activity-dependent molecular and cellular processes. Great hopes-for the measurement of population activity, in particular-have therefore been placed on calcium indicators derived from the green fluorescent protein and their expression in (selected) neuronal populations. Calcium transients can rise within milliseconds, making them suitable as reporters of fast neuronal activity. We here report the production of stable transgenic mouse lines with two different functional calcium indicators, inverse pericam and camgaroo-2, under the control of the tetracycline-inducible promoter. Using a variety of in vitro and in vivo assays, we find that stimuli known to increase intracellular calcium concentration (somatically triggered action potentials (APs) and synaptic and sensory stimulation) can cause substantial and rapid changes in FCIP fluorescence of inverse pericam and camgaroo-2.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/metabolismo , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Bulbo Olfatório/fisiologia , Transdução de Sinais/fisiologia , Animais , Cálcio/fisiologia , Canais de Cálcio/fisiologia , Doxiciclina , Recuperação de Fluorescência Após Fotodegradação , Expressão Gênica , Células HeLa , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Estimulação Luminosa , Retina/metabolismo , Transfecção
20.
Mol Ther Nucleic Acids ; 5: e309, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27070301

RESUMO

Controlling gene expression in mammalian brain is of utmost importance to causally link the role of gene function to cell circuit dynamics under normal conditions and disease states. We have developed recombinant adeno-associated viruses equipped with tetracycline-controlled genetic switches for inducible and reversible control of gene expression in a cell type specific and brain subregion selective manner. Here, we characterize a two-virus approach to efficiently and reliably switch gene expression on and off, repetitively, both in vitro and in vivo. Our recombinant adeno-associated virus (rAAV)-Tet approach is highly flexible and it has great potential for application in basic and biomedical neuroscience research and gene therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA