Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
BMC Plant Biol ; 24(1): 523, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853237

RESUMO

Allelopathy is a biological process in which one organism releases biochemicals that affect the growth and development of other organisms. The current investigation sought to determine the allelopathic effect of Rumex acetosella on white clover (Trifolium repens) growth and development by using its shoot extract (lower IC50 value) as a foliar treatment. Here, different concentrations (25, 50, 100, and 200 g/L) of shoot extract from Rumex acetosella were used as treatments. With increasing concentrations of shoot extract, the plant growth parameters, chlorophyll and total protein content of Trifolium repens decreased. On the other hand, ROS, such as O2.- and H2O2, and antioxidant enzymes, including SOD, CAT, and POD, increased with increasing shoot extract concentration. A phytohormonal study indicated that increased treatment concentrations increased ABA and SA levels while JA levels were reduced. For the identification of allelochemicals, liquid‒liquid extraction, thin-layer chromatography, and open-column chromatography were conducted using R. acetosella shoot extracts, followed by a seed bioassay on the separated layer. A lower IC50 value was obtained through GC/MS analysis. gammaSitosterol was identified as the most abundant component. The shoot extract of Rumex acetosella has strong allelochemical properties that may significantly impede the growth and development of Trifolium repens. This approach could help to understand the competitive abilities of this weed species and in further research provide an alternate weed management strategy.


Assuntos
Alelopatia , Antioxidantes , Extratos Vegetais , Reguladores de Crescimento de Plantas , Rumex , Trifolium , Trifolium/crescimento & desenvolvimento , Trifolium/metabolismo , Trifolium/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antioxidantes/metabolismo , Rumex/crescimento & desenvolvimento , Rumex/metabolismo , Rumex/efeitos dos fármacos , Rumex/química , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Metanol , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/crescimento & desenvolvimento , Feromônios/farmacologia , Feromônios/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Brotos de Planta/química
2.
J Exp Bot ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367013

RESUMO

Ethylene, a plant hormone that significantly influences both plant growth and response to stress, plays a well-established role in stress signaling. However, its impact on stomatal opening and closure during dehydration and rehydration remains relatively unexplored and is still debated. Exogenous ethylene has been proven to induce stomatal closure through a series of signaling pathways, including the accumulation of reactive oxygen species (ROS), subsequent synthesis of nitric oxide (NO) and hydrogen sulfide (H2S), and SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1) activation. Thus, it has been suggested that ethylene might function to induce stomatal closure synergistically with abscisic acid (ABA). Furthermore, it has also been shown that increased ethylene can inhibit ABA- and jasmonic acid (JA)-induced stomatal closure, thus hindering drought-induced closure during dehydration. Simultaneously, other stresses, such as chilling, ozone pollution and K+ deficiency, inhibit drought and ABA-induced stomatal closure through an ethylene synthesis dependent way. However, ethylene has been shown to take on an opposing role during rehydration, preventing stomatal opening in the absence of ABA through its own signaling pathway. These findings offer novel insights into the function of ethylene in stomatal regulation during dehydration and rehydration, gaining a better understanding of the mechanisms underlying ethylene-induced stomatal movement in seed plants.

3.
Environ Monit Assess ; 196(7): 641, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904844

RESUMO

The lack of quality water resources for irrigation is one of the main threats for sustainable farming. This pioneering study focused on finding the best area for farming by looking at irrigation water quality and analyzing its location using a fuzzy logic model on a Geographic Information System platform. In the tribal-prone areas of Khagrachhari Sadar Upazila, Bangladesh, 28 surface water and 39 groundwater samples were taken from shallow tube wells, rivers, canals, ponds, lakes, and waterfalls. The samples were then analyzed for irrigation water quality parameters like electrical conductivity (EC), total dissolved solids (TDS), sodium adsorption ratio (SAR), soluble sodium percentage (SSP), residual sodium bicarbonate (RSBC), magnesium hazard ratio (MHR), Kelley's ratio (KR), and permeability index (PI). Fuzzy Irrigation Water Quality Index (FIWQI) was employed to determine the irrigation suitability of water resources. Spatial maps for parameters like EC, KR, MH, Na%, PI, SAR, and RSBC were developed using fuzzy membership values for groundwater and surface water. The FIWQI results indicate that 100% of the groundwater and 75% of the surface water samples range in the categories of excellent to good for irrigation uses. A new irrigation suitability map constructed by overlaying all parameters showed that surface water (75%) and some groundwater (100%) in the northern and southwestern portions are fit for agriculture. The western and central parts are unfit for irrigation due to higher bicarbonate and magnesium contents. The Piper and Gibbs diagram also indicated that the water in the study area is magnesium-bicarbonate type and the primary mechanism of water chemistry is controlled by the weathering of rocks, respectively. This research pinpoints the irrigation spatial pattern for regional water resource practices, identifies novel suitable areas, and improves sustainable agricultural uses in tribal-prone areas.


Assuntos
Irrigação Agrícola , Monitoramento Ambiental , Lógica Fuzzy , Água Subterrânea , Recursos Hídricos , Bangladesh , Irrigação Agrícola/métodos , Água Subterrânea/química , Análise Espacial , Qualidade da Água , Poluentes Químicos da Água/análise
4.
Physiol Plant ; 175(2): e13903, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37002824

RESUMO

Stomatal closure is regulated by plant hormones and some small molecules to reduce water loss under stress conditions. Both abscisic acid (ABA) and polyamines alone induce stomatal closure; however, whether the physiological functions of ABA and polyamines are synergistic or antagonistic with respect to inducing stomatal closure is still unknown. Here, stomatal movement in response to ABA and/or polyamines was tested in Vicia faba and Arabidopsis thaliana, and the change in the signaling components under stomatal closure was analyzed. We found that both polyamines and ABA could induce stomatal closure through similar signaling components, including the synthesis of hydrogen peroxide (H2 O2 ) and nitric oxide (NO) and the accumulation of Ca2+ . However, polyamines partially inhibited ABA-induced stomatal closure both in epidermal peels and in planta by activating antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), to eliminate the ABA-induced increase in H2 O2 . These results strongly indicate that polyamines inhibit abscisic acid-induced stomatal closure, suggesting that polyamines could be used as potential plant growth regulators to increase photosynthesis under mild drought stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacologia , Peróxido de Hidrogênio , Poliaminas , Estômatos de Plantas/fisiologia , Reguladores de Crescimento de Plantas , Arabidopsis/fisiologia
5.
Sensors (Basel) ; 23(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36617124

RESUMO

Artificial intelligence has significantly enhanced the research paradigm and spectrum with a substantiated promise of continuous applicability in the real world domain. Artificial intelligence, the driving force of the current technological revolution, has been used in many frontiers, including education, security, gaming, finance, robotics, autonomous systems, entertainment, and most importantly the healthcare sector. With the rise of the COVID-19 pandemic, several prediction and detection methods using artificial intelligence have been employed to understand, forecast, handle, and curtail the ensuing threats. In this study, the most recent related publications, methodologies and medical reports were investigated with the purpose of studying artificial intelligence's role in the pandemic. This study presents a comprehensive review of artificial intelligence with specific attention to machine learning, deep learning, image processing, object detection, image segmentation, and few-shot learning studies that were utilized in several tasks related to COVID-19. In particular, genetic analysis, medical image analysis, clinical data analysis, sound analysis, biomedical data classification, socio-demographic data analysis, anomaly detection, health monitoring, personal protective equipment (PPE) observation, social control, and COVID-19 patients' mortality risk approaches were used in this study to forecast the threatening factors of COVID-19. This study demonstrates that artificial-intelligence-based algorithms integrated into Internet of Things wearable devices were quite effective and efficient in COVID-19 detection and forecasting insights which were actionable through wide usage. The results produced by the study prove that artificial intelligence is a promising arena of research that can be applied for disease prognosis, disease forecasting, drug discovery, and to the development of the healthcare sector on a global scale. We prove that artificial intelligence indeed played a significantly important role in helping to fight against COVID-19, and the insightful knowledge provided here could be extremely beneficial for practitioners and research experts in the healthcare domain to implement the artificial-intelligence-based systems in curbing the next pandemic or healthcare disaster.


Assuntos
COVID-19 , Robótica , Humanos , Inteligência Artificial , Pandemias/prevenção & controle , COVID-19/diagnóstico , Algoritmos
6.
Plant Cell Environ ; 44(10): 3347-3357, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34327717

RESUMO

It has been suggested that a trade-off between hydraulic efficiency and safety is related to drought adaptation across species. However, whether leaf hydraulic efficiency is sacrificed for safety during woody resprout regrowth after crown removal is not well understood. We measured leaf water potential (ψleaf ) at predawn (ψpd ) and midday (ψmid ), leaf maximum hydraulic conductance (Kleaf-max ), ψleaf at induction 50% loss of Kleaf-max (Kleaf P50 ), leaf area-specific whole-plant hydraulic conductance (LSC), leaf vein structure and turgor loss point (πtlp ) in 1- to 13-year-old resprouts of the aridland shrub (Caragana korshinskii). ψpd was similar, ψmid and Kleaf P50 became more negative, and Kleaf-max decreased in resprouts with the increasing age; thus, leaf hydraulic efficiency clearly traded off against safety. The difference between ψmid and Kleaf P50 , leaf hydraulic safety margin, increased gradually with increasing resprout age. More negative ψmid and Kleaf P50 were closely related to decreasing LSC and more negative πtlp , respectively, and the decreasing Kleaf-max arose from the lower minor vein density and the narrower midrib xylem vessels. Our results showed that a clear trade-off between leaf hydraulic efficiency and safety helps C. korshinskii resprouts adapt to increasing water stress as they approach final size.


Assuntos
Fabaceae/fisiologia , Folhas de Planta/fisiologia , Água/metabolismo , Fenômenos Biomecânicos , Clima Desértico , Fabaceae/crescimento & desenvolvimento
7.
Int J Mol Sci ; 22(18)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34576299

RESUMO

γ-aminobutyric acid (GABA) is a non-protein amino acid involved in various physiological processes; it aids in the protection of plants against abiotic stresses, such as drought, heavy metals, and salinity. GABA tends to have a protective effect against drought stress in plants by increasing osmolytes and leaf turgor and reducing oxidative damage via antioxidant regulation. Guard cell GABA production is essential, as it may provide the benefits of reducing stomatal opening and transpiration and controlling the release of tonoplast-localized anion transporter, thus resulting in increased water-use efficiency and drought tolerance. We summarized a number of scientific reports on the role and mechanism of GABA-induced drought tolerance in plants. We also discussed existing insights regarding GABA's metabolic and signaling functions used to increase plant tolerance to drought stress.


Assuntos
Secas , Plantas/metabolismo , Estresse Fisiológico , Ácido gama-Aminobutírico/metabolismo , Transpiração Vegetal , Transdução de Sinais
8.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208343

RESUMO

Ozone (O3) is a gaseous environmental pollutant that can enter leaves through stomatal pores and cause damage to foliage. It can induce oxidative stress through the generation of reactive oxygen species (ROS) like hydrogen peroxide (H2O2) that can actively participate in stomatal closing or opening in plants. A number of phytohormones, including abscisic acid (ABA), ethylene (ET), salicylic acid (SA), and jasmonic acid (JA) are involved in stomatal regulation in plants. The effects of ozone on these phytohormones' ability to regulate the guard cells of stomata have been little studied, however, and the goal of this paper is to explore and understand the effects of ozone on stomatal regulation through guard cell signaling by phytohormones. In this review, we updated the existing knowledge by considering several physiological mechanisms related to stomatal regulation after response to ozone. The collected information should deepen our understanding of the molecular pathways associated with response to ozone stress, in particular, how it influences stomatal regulation, mitogen-activated protein kinase (MAPK) activity, and phytohormone signaling. After summarizing the findings and noting the gaps in the literature, we present some ideas for future research on ozone stress in plants.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ozônio/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Estômatos de Plantas/fisiologia , Transdução de Sinais/efeitos dos fármacos , Modelos Biológicos , Estômatos de Plantas/efeitos dos fármacos
9.
Trends Plant Sci ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38782619

RESUMO

Iron (Fe) biofortification of edible organs without influencing crop yield is challenging, and potential solutions are largely unknown. Recently, Yan et al. identified a key regulator NAC78 (NAM/ATAF/CUC DOMAIN TRANSCRIPTION FACTOR 78) that enriches Fe in maize kernels without compromising crop yield. This may provide new crop yield management strategies for Fe acquisition and nutritional security.

10.
Funct Plant Biol ; 512024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38669463

RESUMO

Plants regularly encounter various environmental stresses such as salt, drought, cold, heat, heavy metals and pathogens, leading to changes in their proteome. Of these, a post-translational modification, SUMOylation is particularly significant for its extensive involvement in regulating various plant molecular processes to counteract these external stressors. Small ubiquitin-like modifiers (SUMO) protein modification significantly contributes to various plant functions, encompassing growth, development and response to environmental stresses. The SUMO system has a limited number of ligases even in fully sequenced plant genomes but SUMO E3 ligases are pivotal in recognising substrates during the process of SUMOylation. E3 ligases play pivotal roles in numerous biological and developmental processes in plants, including DNA repair, photomorphogenesis, phytohormone signalling and responses to abiotic and biotic stress. A considerable number of targets for E3 ligases are proteins implicated in reactions to abiotic and biotic stressors. This review sheds light on how plants respond to environmental stresses by focusing on recent findings on the role of SUMO E3 ligases, contributing to a better understanding of how plants react at a molecular level to such stressors.


Assuntos
Estresse Fisiológico , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Plantas/enzimologia , Plantas/metabolismo , Sumoilação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
11.
Heliyon ; 10(1): e22972, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38169693

RESUMO

Magnolia champaca Linn. has traditionally been used for medicinal activity in Asia for treating various chronic diseases as well as a source of food, medicines, and other commodities. Due to the long-used history of this plant, the present study was designed to explore the in vitro, in vivo and in silico anti-inflammatory and antineoplastic properties of the methanolic extract and fractions and the pure compound isolated from the most active chloroform fraction (CHF) of the stem bark of the plant. The isolated compound from the most active CHF was characterized and identified as a glycoside, trans-syringin, through chromatographic and spectroscopic (1H-NMR and 13C-NMR) analyses. In the in vitro anti-inflammatory assay, CHF was most effective in inhibiting inflammation and hemolysis of RBCs by 73.91 ± 1.70% and 75.92 ± 0.14%, respectively, induced by heat and hypotonicity compared to standard acetylsalicylic acid. In the egg albumin denaturation assay, CME and CHF showed the highest inhibition by 56.25 ± 0.82% and 65.82 ± 3.52%, respectively, contrasted with acetylsalicylic acid by 80.14 ± 2.44%. In an in vivo anti-inflammatory assay, statistically significant (p < 0.05) decreases in the parameters of inflammation, such as paw edema, leukocyte migration and vascular permeability, were recorded in a dose-dependent manner in the treated groups. In the antineoplastic assay, 45.26 ± 2.24% and 68.31 ± 3.26% inhibition of tumor cell growth for pure compound were observed compared to 73.26 ± 3.41% for standard vincristine. Apoptotic morphologic alterations, such as membrane and nuclear condensation and fragmentation, were also found in EAC cells after treatment with the isolated bioactive pure compound. Such treatment also reversed the increased WBC count and decreased RBC count to normal values compared to the untreated EAC cell-bearing mice and the standard vincristine-treated mice. Subsequently, in silico molecular docking studies substantiated the current findings, and the isolated pure compound and standard vincristine exhibited -6.4 kcal/mol and -7.3 kcal/mol binding affinities with topoisomerase-II. Additionally, isolated pure compound and standard diclofenac showed -8.2 kcal/mol and -7.6 kcal/mol binding affinities with the COX-2 enzyme, respectively. The analysis of this research suggests that the isolated bioactive pure compound possesses moderate to potent anti-inflammatory and antineoplastic activity and justifies the traditional uses of the stem bark of M. champaca. However, further investigations are necessary to analyze its bioactivity, proper mechanism of action and clinical trials for the revelation of new drug formulations.

12.
Plants (Basel) ; 13(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931071

RESUMO

The escalating global temperatures associated with climate change are detrimental to plant growth and development, leading to significant reductions in crop yields worldwide. Our research demonstrates that salicylic acid (SA), a phytohormone known for its growth-promoting properties, is crucial in enhancing heat tolerance in cotton (Gossypium hirsutum). This enhancement is achieved through modifications in various biochemical, physiological, and growth parameters. Under heat stress, cotton plants typically show significant growth disturbances, including leaf wilting, stunted growth, and reduced biomass. However, priming cotton plants with 1 mM SA significantly mitigated these adverse effects, evidenced by increases in shoot dry mass, leaf-water content, and chlorophyll concentrations in the heat-stressed plants. Heat stress also prompted an increase in hydrogen peroxide levels-a key reactive oxygen species-resulting in heightened electrolyte leakage and elevated malondialdehyde concentrations, which indicate severe impacts on cellular membrane integrity and oxidative stress. Remarkably, SA treatment significantly reduced these oxidative stresses by enhancing the activities of critical antioxidant enzymes, such as catalase, glutathione S-transferase, and ascorbate peroxidase. Additionally, the elevated levels of total soluble sugars in SA-treated plants enhanced osmotic regulation under heat stress. Overall, our findings reveal that SA-triggered protective mechanisms not only preserve photosynthetic pigments but also ameliorate oxidative stress and boost plant resilience in the face of elevated temperatures. In conclusion, the application of 1 mM SA is highly effective in enhancing heat tolerance in cotton and is recommended for field trials before being commercially used to improve crop resilience under increasing global temperatures.

13.
PLoS One ; 18(6): e0287342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37319267

RESUMO

The economic landscape of the United Kingdom has been significantly shaped by the intertwined issues of Brexit, COVID-19, and their interconnected impacts. Despite the country's robust and diverse economy, the disruptions caused by Brexit and the COVID-19 pandemic have created uncertainty and upheaval for both businesses and individuals. Recognizing the magnitude of these challenges, academic literature has directed its attention toward conducting immediate research in this crucial area. This study sets out to investigate key economic factors that have influenced various sectors of the UK economy and have broader economic implications within the context of Brexit and COVID-19. The factors under scrutiny include the unemployment rate, GDP index, earnings, and trade. To accomplish this, a range of data analysis tools and techniques were employed, including the Box-Jenkins method, neural network modeling, Google Trend analysis, and Twitter-sentiment analysis. The analysis encompassed different periods: pre-Brexit (2011-2016), Brexit (2016-2020), the COVID-19 period, and post-Brexit (2020-2021). The findings of the analysis offer intriguing insights spanning the past decade. For instance, the unemployment rate displayed a downward trend until 2020 but experienced a spike in 2021, persisting for a six-month period. Meanwhile, total earnings per week exhibited a gradual increase over time, and the GDP index demonstrated an upward trajectory until 2020 but declined during the COVID-19 period. Notably, trade experienced the most significant decline following both Brexit and the COVID-19 pandemic. Furthermore, the impact of these events exhibited variations across the UK's four regions and twelve industries. Wales and Northern Ireland emerged as the regions most affected by Brexit and COVID-19, with industries such as accommodation, construction, and wholesale trade particularly impacted in terms of earnings and employment levels. Conversely, industries such as finance, science, and health demonstrated an increased contribution to the UK's total GDP in the post-Brexit period, indicating some positive outcomes. It is worth highlighting that the impact of these economic factors was more pronounced on men than on women. Among all the variables analyzed, trade suffered the most severe consequences in the UK. By early 2021, the macroeconomic situation in the country was characterized by a simple dynamic: economic demand rebounded at a faster pace than supply, leading to shortages, bottlenecks, and inflation. The findings of this research carry significant value for the UK government and businesses, empowering them to adapt and innovate based on forecasts to navigate the challenges posed by Brexit and COVID-19. By doing so, they can promote long-term economic growth and effectively address the disruptions caused by these interrelated issues.


Assuntos
COVID-19 , Pandemias , Masculino , Humanos , Feminino , Reino Unido/epidemiologia , União Europeia , COVID-19/epidemiologia , Renda
14.
J Plant Physiol ; 279: 153832, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257087

RESUMO

Plants secreted phytocytokine SMALL PHYTOCYTOKINES REGULATING DEFENSE AND WATER LOSS (SCREWs) and its receptor PLANT SCREW UNRESPONSIVE RECEPTOR (NUT) to counter abscisic acid (ABA)- and pathogen-induced stomatal closure (Liu et al.). This novel signaling process provides plants with a new strategy to increase immunity through disrupting an aqueous habitat for pathogen colonization.


Assuntos
Estômatos de Plantas , Transdução de Sinais , Estômatos de Plantas/fisiologia , Ácido Abscísico , Imunidade Vegetal , Plantas , Água
15.
Trends Plant Sci ; 27(10): 955-957, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35840482

RESUMO

Wang et al. recently showed that, in soybean (Glycine max), root nodule formation is induced by a light-triggered signal that moves from the upper part of the plant to the roots. This novel signaling process opens a new area of research aimed to optimize the carbon-nitrogen balance in plant-rhizobium symbiosis.


Assuntos
Fabaceae , Rhizobium , Carbono , Fabaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Nodulação , Raízes de Plantas/metabolismo , Glycine max/metabolismo , Simbiose
16.
BMC Complement Med Ther ; 22(1): 169, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35733130

RESUMO

BACKGROUND: Pithecellobium dulce (Roxb.), an evergreen medium-sized, spiny tree which have vast nutritional values and widely used in ayurvedic medicines and home remedies. The plant has also been a rich source of biologically active compounds. The present study was designed to isolate pure compound from ethyl acetate fraction of methanol extract of leaves and to know the efficacy as antioxidant as well as its anti-tumor activity on Ehrlich ascites carcinoma cell (EAC).  METHODS: The leaves were extracted with methanol and fractionated with different solvents. The isolation of the compound was carried out by column chromatography from ethyl acetate fraction (EAF) and structure was revealed by 1H-NMR and 13C NMR. The antioxidant activity was investigated by the scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals as well as the inhibition of oxidative damage of pUC19 plasmid DNA, hemolysis and lipid peroxidation induced by a water-soluble free radical initiator 2,2'-azo (2-asmidinopropane) dihydrochloride (AAPH) in human erythrocytes. In vivo anti-tumor activity of the compound was also evaluated by determining the viable tumor cell count, hematological profiles of experimental mice along with observing morphological changes of EAC cells by fluorescence microscope. RESULTS: The isolated compound kaempferol-3-O-alpha-L-rhamnoside effectively inhibited AAPH induced oxidation in DNA and human erythrocyte model and lipid per oxidation as well as a stronger DPPH radical scavenging activity. In anti-tumor assay, at a dose of 50 mg/kg body weight exhibit about 70.89 ± 6.62% EAC cell growth inhibition, whereas standard anticancer drug vincristine showed 77.84 ± 6.69% growth inhibition. CONCLUSION: The compound may have a great importance as a therapeutic agent in preventing oxidative damage of biomolecules and therapeutic use in chemotherapy.


Assuntos
Antioxidantes , Fabaceae , Animais , Antioxidantes/química , Manosídeos , Metanol/análise , Metanol/química , Camundongos , Extratos Vegetais/química , Folhas de Planta/química , Proantocianidinas
17.
PLoS One ; 17(9): e0274538, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36107971

RESUMO

The devastating impact of the Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) pandemic almost halted the global economy and is responsible for 6 million deaths with infection rates of over 524 million. With significant reservations, initially, the SARS-CoV-2 virus was suspected to be infected by and closely related to Bats. However, over the periods of learning and critical development of experimental evidence, it is found to have some similarities with several gene clusters and virus proteins identified in animal-human transmission. Despite this substantial evidence and learnings, there is limited exploration regarding the SARS-CoV-2 genome to putative microRNAs (miRNAs) in the virus life cycle. In this context, this paper presents a detection method of SARS-CoV-2 precursor-miRNAs (pre-miRNAs) that helps to identify a quick detection of specific ribonucleic acid (RNAs). The approach employs an artificial neural network and proposes a model that estimated accuracy of 98.24%. The sampling technique includes a random selection of highly unbalanced datasets for reducing class imbalance following the application of matriculation artificial neural network that includes accuracy curve, loss curve, and confusion matrix. The classical approach to machine learning is then compared with the model and its performance. The proposed approach would be beneficial in identifying the target regions of RNA and better recognising of SARS-CoV-2 genome sequence to design oligonucleotide-based drugs against the genetic structure of the virus.


Assuntos
COVID-19 , Quirópteros , MicroRNAs , Animais , COVID-19/diagnóstico , Humanos , Aprendizado de Máquina , Oligonucleotídeos , SARS-CoV-2/genética
18.
Life (Basel) ; 12(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36143490

RESUMO

Many plants confront several environmental stresses including heat, water stress, drought, salinity and high-metal concentrations that are crucial in defining plant productivity at different stages of their life cycle. Nitric oxide (NO) and Silicon (Si) are very effective molecules related in most of them and in varied biochemical events that have proven to be protective during cellular injury caused by some stress conditions like water stress. In the current work, we studied the effect of Si and NO alone and NO + Si interactive application on the response of plants exposed to water deficiency and well-watered plants for the Milord apricot variety. Water stress caused a reduce in chlorophyll content, dry and fresh weight, leaf area, stomatal conductivity, leaf relative water content and nutrient elements, while it caused an increase in leaf temperature, leaf proline, leaf malondialdehyde (MDA) content and membrane permeability. Si, NO and Si + NO combination treatments under water stress conditions significantly decreased the adverse effects of water stress on leaf temperature, leaf area, dry and fresh weight, stomata conductivity, relative water content, membrane permeability, L-proline and MDA content. The shoot dry weight, chlorophyll content, stomata conductivity and leaf relative water content in Si + NO treated apricot saplings increased by 59%, 55%, 12% and 8%, respectively. Combined treatment (Si + NO) was detected to be more effective than single applications (Si or NO) on some physiological, biochemical, morphological and nutritional properties of apricot under water stress conditions.

19.
Plant Signal Behav ; 17(1): 2071024, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35506344

RESUMO

Members of the SNF1-related protein kinase 2 (SnRK2) family are plant-specific serine or threonine kinases that play a pivotal role in the response of plants to abiotic stresses. Members of this plant-specific kinase family have included a critical regulator (SnRK2) of abscisic acid (ABA) response in plants. Plant organ development is governed substantially by the interaction of the SnRK2 and the phytohormone abscisic acid (ABA). Recent research has revealed a synergistic link between SnRK2 and ABA signaling in a plant's response to stress such as drought and shoot growth. SnRK2 kinases play a dual role in the control of SnRK1 and the development of a plant. The dual role of SnRK2 kinases promotes plant growth under optimal conditions and in the absence of ABA while inhibiting the growth of plants in response to ABA. In this review, we have uncovered the roles of ABA-activated SnRK2 kinases in plants, as well as their physiological mechanisms.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/fisiologia
20.
Life (Basel) ; 12(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36013414

RESUMO

The cucumber (Cucumis sativus L.) is one of the most important vegetables in Bangladesh as well as across the globe. However, many of the important cucumber landraces have disappeared in Bangladesh due to climate change, particularly erratic rainfall, extreme temperature, salinity, and drought. Therefore, to protect against the extinction of the cucumber landraces, we collected 103 landraces in different geographical regions of Bangladesh, including drought and saline-prone areas, and studied their divergence for the future breeding programme for the development of cultivars suitable for the climate-changing situations. Data on morphological features, yield, and its components, which include 17 qualitative and quantitative traits, were recorded during the observation. Among the cucumber landraces, the Shannon-Weaver diversity index analysis revealed the presence of genetic diversity in these landraces. The biggest diversity appeared in the fruit-related characteristics, i.e., stem end fruit shape, bottom end fruit shape, fruit shape, and fruit skin colour at the table and harvest maturity. The descriptive statistics and analysis of variance expressed a wide range of variability for quantitative traits. A broad phenotypic variation was also observed for traits such as yield plant-1 [CV (%) 31.88, ranges 0.96 to 3.11 kg] and fruits plant-1 (CV (%), 28.71, ranges, 2.58 to 9.75). High heritability (broad sense) coupled with a high genetic gain was observed for yield and yield-contributing characteristics, indicating that these characteristics are controlled by additive gene effects, and they are more reliable for effective selection. The phenotypic correlation studies showed that fruit yield plant-1 exhibited a positive and significant correlation with fruits plant-1, fruit length, fruit weight, fruit width, branches plant-1, and plant height. All landraces were grouped into six clusters, and the maximum number of landraces were accommodated in cluster VI (30), followed by cluster V (22), cluster III (22), cluster IV (14), cluster I (13), and cluster II (2). Comparing cluster means with studied traits revealed that cluster III with landraces AC-14, AC-97, AC-471, AC-451, and RAI-209 were more divergent for improving average fruit weight, fruit length, and fruit width. On the other hand, cluster IV with landraces AC-201, TT-161, RAI- 217, RAI-215, and TRMR-103 were more divergent for improving average vine length, internode length, and the number of primary branches plant-1, the number of fruits plant-1, and yield plant-1. According to the MGIDI index, AC-14 (G1), AC-201 (G7), AC-471 (G24), AC-97 (G30), RAI-215 (G68) and TT-161 (G 94) may be considered to be the best parents based on their qualitative and quantitative characteristics for the future breeding programme. Moreover, crossing between the landraces, which were collected from saline and drought areas, in clusters I, V, and VI with those in other clusters could produce suitable cucumber varieties for the climatic changing situation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA